List:Algorithms

From Algorithm Wiki
Jump to navigation Jump to search
Family Name Year Time Complexity Space Complexity
Approximate OBST Melhorn's Approximation algorithm (Approximate OBST Optimal Binary Search Trees) 1975 $O(n)$ $O(n)$
Approximate OBST Karpinski (Approximate OBST Optimal Binary Search Trees) 1996 $O(n^{0.6})$ $O({1})$
Alphabetic Tree Problem Klawe; Mumey (Alphabetic Tree Problem Optimal Binary Search Trees) 1993 $O(n)$ $O(n)$
Approximate OBST Larmore (Approximate OBST Optimal Binary Search Trees) 1987 $O(n^{1.6})$ $O(n)$
k-ANNS Hierarchical Navigable Small World (HNSW) (k-ANNS Nearest Neighbor Search) 2018 $O(nlogn)$ $O(M)$
k-ANNS Locality-sensitive hashing (k-ANNS Nearest Neighbor Search) 2010 $O(nLkt)$ (pre-processing)

$O(L(kt+dnP_2^k))$ (query-time) || $O(nL)$

k-ANNS for a dense 3D map of geometric points Projected radial search (k-ANNS for a dense 3D map of geometric points Nearest Neighbor Search) 2013 $O(k)$ $O({1})$
k-ANNS Compression/Clustering (Vector Quantization) (k-ANNS Nearest Neighbor Search) 1992 Varies by codebook structure Varies by codebook structure
Subset Sum Pisinger (Subset Sum The Subset-Sum Problem) 2003 $O(nt/logt)$ $O(t/logt)$
Subset Sum Faaland (Subset Sum The Subset-Sum Problem) 1973 $O(n' t)$ $O(t)$
Subset Sum Pferschy (Subset Sum The Subset-Sum Problem) 1999 $O(n' t)$ $O(t)$
Subset Sum Klinz (Subset Sum The Subset-Sum Problem) 1999 $O(σ^{({3}/{2})})$ $O(t)$
Subset Sum Eppstein (Subset Sum The Subset-Sum Problem) 1997 $\tilde{O}(n max(S))$ $O(t logt)$
Subset Sum Serang (Subset Sum The Subset-Sum Problem) 2014 $\tilde{O}(n max(S))$ $O(t logt)$
Subset Sum Serang (Subset Sum The Subset-Sum Problem) 2015 $\tilde{O}(n max(S))$ $O(t logt)$
Subset Sum Lokshtanov (Subset Sum The Subset-Sum Problem) 2010 $\tilde{O}(n^{3} t)$ $O(n^{2})$
Almost Stable Marriage Problem Valentin Polishchuk, and Jukka Suomela (Almost Stable Marriage Problem Stable Matching Problem) 2008 $O({1})$ $O({1})$
Motif Search Lawrence, Reilly (Motif Search Motif Search) 1990 $O(nm)$ $O(nm)$
Motif Search Lawrence Gibbs Sampling (Motif Search Motif Search) 1993 $O(nm)$ $O(n + m)$
Motif Search MotifSampler (Motif Search Motif Search) 2001 $O(nm)$ $O(n + m)$
Texture Synthesis tree-structured vector quantization Wei-Levoy (Texture Synthesis Texture Synthesis) 2000 $O(n^{2} log n)$ $O(nd)$
Texture Synthesis Spatial GAN-Based; Urs Bergmann, Nikolay Jetchev, Roland Vollgraf (Texture Synthesis Texture Synthesis) 2017 $O(N)$ $O(N)$
n-Queens Completion Grigoryan (n-Queens Completion n-Queens Problem) 2018 $O(n)$ $O(n)$
Cycle Detection Sedgewick; Szymanski; and Yao (Cycle Detection Cycle Detection) 1982 $(\mu + \lambda)({1}+\Theta({1}/sqrt(M)))$ M
Cycle Detection Nivasch (Cycle Detection Cycle Detection) 2004 $O(\mu + \lambda)$ $O(\log\mu)$
Comparison Sorting Naive sorting (Comparison Sorting Sorting) 1940 $O(n^{2})$ $O({1})$ (in-situ)
Comparison Sorting Selection Sort (Comparison Sorting Sorting) 1962 $O(n^{2})$ $O({1})$ (in-situ)
Comparison Sorting Merge Sort (Comparison Sorting Sorting) 1945 $O(n \log n)$ $O(n)$
Comparison Sorting Bubble Sort (Comparison Sorting Sorting) 1956 $O(n^{2})$ $O({1})$ (in-situ)
Comparison Sorting Intro Sort (Comparison Sorting Sorting) 1997 $O(n \log n)$ $O(logn)$
Comparison Sorting Heap Sort (Comparison Sorting Sorting) 1964 $O(n \log n)$ $O({1})$ (in-situ)
Non-Comparison Sorting Counting Sort (Non-Comparison Sorting Sorting) 1954 $O(n+k)$ $O(n+k)$
Non-Comparison Sorting Bucket Sort (Non-Comparison Sorting Sorting) 1940 $O( n² )$ $O(n)$
Non-Comparison Sorting Radix Sort (Non-Comparison Sorting Sorting) 1940 $O(wn)$ $O(w+n)$
kth Order Statistic Naive Selection (kth Order Statistic kth Order Statistic) 1940 $O(n \log n)$ $O({1})$ (in-situ)
kth Order Statistic Hoare's Selection Algorithm (QuickSelect) (kth Order Statistic kth Order Statistic) 1961 $O(n^{2})$ $O({1})$ (in-situ)
Matrix Chain Ordering Problem Brute Force (Matrix Chain Ordering Problem Matrix Chain Multiplication) 1940 $O({4}^n)$ $O(n)$
Matrix Chain Ordering Problem Dynamic Programming Algorithm (S. S. Godbole) (Matrix Chain Ordering Problem Matrix Chain Multiplication) 1953 $O(n^{3})$ $O(n^{2})$
LCS Wagner and Fischer (LCS Longest Common Subsequence) 1974 $O(mn)$ $O(mn)$
Maximum Flow Ford & Fulkerson ( Maximum Flow) 1955 $O(E^{2}U)$ $O(E)$
Maximum Flow Dinitz ( Maximum Flow) 1970 $O(V^{2}E)$ $O(E)$
Maximum Flow Edmonds & Karp ( Maximum Flow) 1972 $O(E^{2} \log U)$ $O(E)$
Maximum Flow Karzanov ( Maximum Flow) 1974 $O(V^{3})$ $O(V^{2})$
Maximum Flow Galil & Naamad ( Maximum Flow) 1980 $O(VE \log^{2} V)$ $O(E)$
Matrix Multiplication Naive algorithm (Matrix Multiplication Matrix Product) 1940 $O(n^{3})$ $O({1})$ auxiliary
Matrix Multiplication Strassen's algorithm (Matrix Multiplication Matrix Product) 1969 $O(n^{(log7/log2)}) ~ O(n^{2.{80}7})$ $O(n^{2})$
Matrix Multiplication Pan's algorithm (Matrix Multiplication Matrix Product) 1978 $O(n^{(log({143640})/log({70}))}) ~ O(n^{2.{79}5})$ $O(n^{2})$
Matrix Multiplication Romani's algorithm (Matrix Multiplication Matrix Product) 1981 $O(n^{2.{5166}5})$ $O(n^{2})$
Matrix Multiplication Coppersmith–Winograd algorithm (Matrix Multiplication Matrix Product) 1981 $O(n^{2.{49554}8})$ $O(n^{2})$
Matrix Multiplication Strassen's algorithm (Matrix Multiplication Matrix Product) 1986 $O(n^{(log54/log5)}) ~ O(n^{({2.4785})})$ $O(n^{2})$
Matrix Multiplication Coppersmith–Winograd algorithm (Matrix Multiplication Matrix Product) 1990 $O(n^{2.{375}5})$ $O(n^{2})$
Matrix Multiplication Vassilevska Williams (Matrix Multiplication Matrix Product) 2014 $O(n^{2.{37287}3})$ $O(n^{2})$
Matrix Multiplication François Le Gall (Matrix Multiplication Matrix Product) 2014 $O(n^{2.{372863}9})$ $O(n^{2})$
3-Graph Coloring Brute-force search (3-Graph Coloring Graph Coloring) 1852 $O((m+n)*{3}^n)$ $O(n)$ auxiliary
4-Graph Coloring Brute force (4-Graph Coloring Graph Coloring) 1852 $O((m+n)*{4}^n)$ $O(n)$ auxiliary
General Linear System; Positive Definite, Hermitian Matrix; Non-Definite, Symmetric Matrix; Toeplitz Matrix; Vandermonde Matrix Gaussian-Jordan Elimination (General Linear System; Positive Definite, Hermitian Matrix; Non-Definite, Symmetric Matrix; Toeplitz Matrix; Vandermonde Matrix Linear System) -150 $O(n^{3})$ $O(n^{2})$
Positive Definite, Hermitian Matrix Cholesky (Positive Definite, Hermitian Matrix Linear System) 1940 $O(n^{3})$ $O(n^{2})$
Non-Definite, Symmetric Matrix Aasen's method (Non-Definite, Symmetric Matrix Linear System) 1971 $O(n^{3})$ $O(n^{2})$ total
Toeplitz Matrix Levinson–Durbin recursion (Toeplitz Matrix Linear System) 1947 $O(n^{2})$ $O(n^{2})$ total
Toeplitz Matrix Bareiss Algorithm (Toeplitz Matrix Linear System) 1969 $O(n^{2})$ $O(n^{2})$ total
Vandermonde Matrix Bjorck-Pereyra (Vandermonde Matrix Linear System) 1970 $O(n^{2})$ $O(n^{2})$ total
Linear Programming Fourier–Motzkin elimination ( Linear Programming) 1940 $O((m/{4})$^{({2}^n)}) $O((m/{4})$^{({2}^n)})
Linear Programming Khachiyan Ellipsoid algorithm ( Linear Programming) 1979 $O(n^{6} * L^{2} \log L \log\log L)$ $O(nmL)$
Reporting all intersection points, line segments Naive (Reporting all intersection points, line segments Line segment intersection) 1940 $O(n^{2})$ $O({1})$
Reporting all intersection points, line segments Bentley–Ottmann algorithm (Reporting all intersection points, line segments Line segment intersection) 1979 $O( n \log n + k \log n)$ $O(n)$
2-dimensional Brute Force (2-dimensional Convex Hull) 1935 $O(n^{3})$ $O(n)$
2-dimensional Jarvis (2-dimensional Convex Hull) 1973 $O(nh)$ $O({1})$
Undirected, General MST Kruskal’s algorithm with demand-sorting (Undirected, General MST Minimum Spanning Tree (MST)) 1991 $O(E \log V)$ $O(E)$
Undirected, General MST Quick Kruskal algorithm (Undirected, General MST Minimum Spanning Tree (MST)) 2006 $O(E \log V)$ $O(E)$
Undirected, General MST Karger; Klein & Tarjan (Undirected, General MST Minimum Spanning Tree (MST)) 1995 $O(min(V^{2}, ElogV)$) $O(E)$
k-dimensional space, l_m (or l_infty) norm Naive Implementation (k-dimensional space, l_m (or l_infty) norm Closest Pair Problem) 1975 $O(kn^{2})$ $O({1})$
Square Matrix LU Decomposition Doolittle Algorithm (Square Matrix LU Decomposition LU Decomposition) 1878 $O(n^{3})$ $\tilde{O}({1})$
Square Matrix LU Decomposition Crout and LUP algorithms (Square Matrix LU Decomposition LU Decomposition) 2007 $O(n^{3})$ $\tilde{O}({1})$
Square Matrix LU Decomposition Okunev; Johnson (Square Matrix LU Decomposition LU Decomposition) 1997 $O(n^{3})$ $O({1})$
Informed Search A* Algorithm (Informed Search Informed Search) 1968 $O(b^d)$ $O(b^d)$
Informed Search Bidirectional A* Algorithm (Informed Search Informed Search) 2007 $O(b^{(d/{2})})$ $O(b^{(d/{2})$})
Informed Search Fringe Saving A* (FSA*) (Informed Search Informed Search) 2008 $O(b^d)$ $O(b^d)$
Informed Search Generalized Adaptive A* (GAA*) (Informed Search Informed Search) 2008 $O(b^d)$ $O(b^d)$
Informed Search Iterative Deepening A* (IDA*) (Informed Search Informed Search) 1985 $O(b^d)$ $O(b^d)$
Informed Search Jump Point Search (JPS) (Informed Search Informed Search) 2011 $O(b^d)$ $O(b^d)$
Informed Search Lifelong Planning A* (LPA*) (Informed Search Informed Search) 2001 $O(b^d)$ $O(b^d)$
Informed Search Simplified Memory-Bounded A* (SMA*) (Informed Search Informed Search) 1992 $O(b^d)$ $O(b^d)$
Informed Search Theta* (Informed Search Informed Search) 2010 $O(b^d)$ $O(b^d)$
Informed Search Anytime Repairing A* (ARA*) (Informed Search Informed Search) 2005 $O(b^d)$ $O(b^d)$
Informed Search Time-Bounded A* (TBA*) (Informed Search Informed Search) 2009 $O(b^d)$ $O(b^d)$
Single String Search Naïve string-search algorithm (Single String Search String Search) 1940 $O(m(n-m+{1}))$ $O({1})$
Single String Search Knuth-Morris-Pratt (KMP) algorithm (Single String Search String Search) 1977 $O(m+n)$ $O(m)$
Single String Search Boyer-Moore (BM) algorithm (Single String Search String Search) 1977 $O(mn + s)$ $O(s)$
Single String Search Rabin-Karp (RK) algorithm (Single String Search String Search) 1987 $O(mn)$ $O({1})$
Edit sequence, global alignment Needleman–Wunsch algorithm (Edit sequence, global alignment Sequence Alignment) 1970 $O(mn)$ $O(mn)$
Edit sequence, local alignment Smith–Waterman algorithm (Edit sequence, local alignment Sequence Alignment) 1981 $O(mn^{2})$ $O(mn)$
Edit distance Masek; Patterson (Edit distance Sequence Alignment) 1980 $O(mn / log(n))$ $O(n)$
Edit sequence Hirschberg's algorithm (Edit sequence Sequence Alignment) 1975 $O(mn)$ $O(n)$
Edit sequence, local alignment FASTA (Edit sequence, local alignment Sequence Alignment) 1985 $O(mn)$ $O(mn)$
Edit sequence, local alignment Gotoh (Edit sequence, local alignment Sequence Alignment) 1982 $O(mn)$ $O(mn)$
Edit sequence, local alignment Altschul and Erickson (Edit sequence, local alignment Sequence Alignment) 1986 $O(mn)$ $O(mn)$
Edit sequence, local alignment Myers and Miller (Edit sequence, local alignment Sequence Alignment) 1988 $O(mn)$ $O(n+log(m)$)
Edit sequence, global alignment David Sankoff (Edit sequence, global alignment Sequence Alignment) 1972 $O(mn)$ $O(mn)$
Rectangular Window Cohen–Sutherland (Rectangular Window Line Clipping) 1967 $O(n)$ $O({1})$
Rectangular Window Liang–Barsky (Rectangular Window Line Clipping) 1984 $O(n)$ $O({1})$
Convex Polygonal Window; Convex Polyhedral window Cyrus–Beck (Convex Polygonal Window; Convex Polyhedral window Line Clipping) 1978 $O(np)$ $O({1})$
Rectangular Window Nicholl–Lee–Nicholl (Rectangular Window Line Clipping) 1987 $O(n)$ $O({1})$
Rectangular Window Fast clipping (Rectangular Window Line Clipping) 1987 $O(n)$ $O({1})$
NFA to DFA conversion Rabin–Scott powerset construction ( NFA to DFA conversion) 1959 $O({2}^n)$ $O({1})$
Multiplication Karatsuba Algorithm ( Multiplication) 1962 $O(n^{1.{5}8})$ $O(n)$
Multiplication Toom-3 ( Multiplication) 1969 $O(n^{1.{4}6})$ $O(n)$
Multiplication Long Multiplication ( Multiplication) 1940 $O(n^{2})$ $O(n)$
Line Simplification Ramer–Douglas–Peucker algorithm ( Line Simplification) 1972 $O(n^{2})$ $O(n)$
Line Simplification Visvalingam–Whyatt ( Line Simplification) 1993 $O(n^{2})$ $O(n)$
Line Simplification Reumann–Witkam ( Line Simplification) 1974 $O(n)$ $O({1})$
Line Simplification Opheim simplification ( Line Simplification) 1981 $O(n)$ $O({1})$
Line Simplification Lang simplification ( Line Simplification) 1969 $O(n)$ $O({1})$
Line Simplification Zhao-Saalfeld ( Line Simplification) 1997 $O(n)$ $O(n)$
Nearest Neighbor Search (NNS) Linear search (Nearest Neighbor Search (NNS) Nearest Neighbor Search) 1940 $O(n)$ $O({1})$
Nearest Neighbor Search (NNS) k-d Tree (Nearest Neighbor Search (NNS) Nearest Neighbor Search) 1975 k-d Tree construction: $O(n \log n)$

NNS: $O(n)$ || $O(n)$

Nearest Neighbor Search (NNS) R-tree (Nearest Neighbor Search (NNS) Nearest Neighbor Search) 1984 R-Tree construction: $O(n \log n)$

NNS: $O(n)$ || $O(log n)$

Subset Sum Horowitz and Sahni (Subset Sum The Subset-Sum Problem) 1974 $O({2}^{(n/{2})})$ $O({2}^{(n/{2})$})
Subset Sum Bellman dynamic programming algorithm (Subset Sum The Subset-Sum Problem) 1956 $O(n t)$ $O(t)$
Subset Sum Psinger (Subset Sum The Subset-Sum Problem) 1999 $O(n max(S))$ $O(t)$
Subset Sum Koiliaris and Xu (Subset Sum The Subset-Sum Problem) 2019 $\tilde{O}(min{\sqrt{n'}t, t^{5/4}, σ})$ $O(t)$
Subset Sum Bringman (Subset Sum The Subset-Sum Problem) 2017 $\tilde{O}(nt^{1+\epsilon})$ \tilde{O}(nt^\epsilon)
1D Maximum Subarray Brute Force (1D Maximum Subarray Maximum Subarray Problem) 1977 $O(n^{3})$ $O({1})$
1D Maximum Subarray Grenander (1D Maximum Subarray Maximum Subarray Problem) 1977 $O(n^{2})$ $O(n)$
1D Maximum Subarray Faster Brute Force (via x(L:U) = x(L:U-1)+x(U)) (1D Maximum Subarray Maximum Subarray Problem) 1977 $O(n^{2})$ $O({1})$
1D Maximum Subarray Shamos (1D Maximum Subarray Maximum Subarray Problem) 1978 $O(n \log n)$ $O(\log n)$
1D Maximum Subarray Kadane's Algorithm (1D Maximum Subarray Maximum Subarray Problem) 1982 $O(n)$ $O({1})$ auxiliary
1D Maximum Subarray Perumalla and Deo (1D Maximum Subarray Maximum Subarray Problem) 1995 $O(\log n)$ $O(n)$ auxiliary
Motif Search Speller (Motif Search Motif Search) 1998 $O(mn^{2} \sigma)$ $O(mn^{2}/w)$
Motif Search Mitra (Motif Search Motif Search) 2002 $O(k nm \sigma)$ $O(mnk)$
Motif Search Census (Motif Search Motif Search) 2003 $O(k nm \sigma)$ $O(mnk)$
Motif Search Risotto (Motif Search Motif Search) 2006 $O(mn^{2} \sigma)$ $O(mn^{2})$
Motif Search PMS (Motif Search Motif Search) 2007 $O(nm^{2} \sigma)$ $O(m^{2} n)$
Rod-Cutting Problem Brute Force (Rod-Cutting Problem Rod-Cutting Problem) 1940 $O(n*{2}^n)$ $O(n)$
Rod-Cutting Problem Dynamic Programming (Rod-Cutting Problem Rod-Cutting Problem) 1953 $O(n^{2})$ $O(n)$
Change-Making Problem Brute Force (Change-Making Problem Change-Making Problem) 1940 $O(S^n)$ $O(n)$
Change-Making Problem Dynamic Programming (Change-Making Problem Change-Making Problem) 1953 $O(Sn)$ $O(Sn)$
Approximate MCOP Czumaj (Approximate MCOP Matrix Chain Multiplication) 1996 $O(\log n)$ $O(n)$
Approximate MCOP Czumaj (Approximate MCOP Matrix Chain Multiplication) 1996 $O(\log \log n)$ $O(n)$
Approximate MCOP Chandra (Approximate MCOP Matrix Chain Multiplication) 1975 $O(n)$ $O(n)$?
Approximate MCOP Chin (Approximate MCOP Matrix Chain Multiplication) 1978 $O(n)$ $O(n)$
Matrix Multiplication Bini's algorithm (Matrix Multiplication Matrix Product) 1979 $O(n^{2.{779}9})$ $O(n^{2})$
Matrix Multiplication Schonhage's algorithm (Matrix Multiplication Matrix Product) 1980 $O(n^{({3}*\log {52}/l \og {110})}) ~ O(n^{2.{521}8})$ $O(n^{2})$
[[O(n^{3/14}) coloring a 3-colorable graph|O(n^{3/14}) coloring a 3-colorable graph]] [[Karger, Blum (O(n^{3/14}) coloring a 3-colorable graph Graph Coloring)]] 1997 $O(poly(n))$ -
3-Graph Coloring Brélaz (DSatur) (3-Graph Coloring Graph Coloring) 1979 $O(n^{2})$ $O(m+n)$
Maximum Cardinality Matching Micali and Vazirani ( Maximum Cardinality Matching) 1980 $O(V^{0.5} E)$ $O(V)$
Minimum TSP Miller-Tucker-Zemlin (MTZ) formulation (Minimum TSP The Traveling-Salesman Problem) 1960 $exp(V)$ $O(V^{4})$
Minimum TSP Dantzig-Fulkerson-Johnson (DFJ) formulation (Minimum TSP The Traveling-Salesman Problem) 1954 $O({1.674}^V E^{2})$ $O({2}^V)$
Geometric Maximum TSP Barvinok (Geometric Maximum TSP The Traveling-Salesman Problem) 2003 $O(V^{2} \log\log E)$ $O(V)$?
Corner Detection Harris and Stephens algorithm (Corner Detection Feature Detection) 1988 $O(n^{2})$ -
Corner Detection L. Kitchen and A. Rosenfeld (Corner Detection Feature Detection) 1982 $O(n^{3})$ -
Corner Detection The SUSAN corner detector (Corner Detection Feature Detection) 1997 $O(n^{3})$ -
Weighted Set-Covering Chvatal greedy heuristic (Weighted Set-Covering The Set-Covering Problem) 1979 $O(dn^{2})$ $O(dm)$
Unweighted Set-Covering Alon; Moshkovitz & Safra (Unweighted Set-Covering The Set-Covering Problem) 2006 $O(nlogn)$ -
Motif Search Roth AlignACE (Motif Search Motif Search) 1998 $O(nm)$ $O(n + m)$
Image Compositing Petro Vlahos Algorithm (Image Compositing Image Compositing) 1985 $O(n^{2} k/r)$ $O(nk)$??
Texture Synthesis non-parametric sampling Efros and Leung (Texture Synthesis Texture Synthesis) 1999 $O(n^{3})$ -
Texture Synthesis image analogies Hertzmann (Texture Synthesis Texture Synthesis) 2001 $O(N \log n)$ -
Texture Synthesis R. Paget ; I.D. Longstaff (Texture Synthesis Texture Synthesis) 1998 $O(n^{3})$ -
Texture Synthesis Image quilting Efros-Freeman (Texture Synthesis Texture Synthesis) 2001 $O(n^{3})$ -
SLAM Algorithms EKF SLAM (SLAM Algorithms SLAM Algorithms) 1998 $O(n^{3})$ $O(n^{2})$?
SLAM Algorithms UKF (SLAM Algorithms SLAM Algorithms) 2000 $O(n^{3})$ $O(n^{2})$?
SLAM Algorithms Compressed Extended KF (SLAM Algorithms SLAM Algorithms) 2002 $O(n^{3})$ $O(n^{2})$?
SLAM Algorithms Rao-Blackwellized Particle Filtering SLAM (SLAM Algorithms SLAM Algorithms) 2001 $O(n^{2})$ $O(n)$?
3-Graph Coloring Petford and Welsh (3-Graph Coloring Graph Coloring) 1989 $O(n \log n)$ $O(n)$
4-Graph Coloring Fomin; Gaspers & Saurabh (4-Graph Coloring Graph Coloring) 2007 $O({1.7272}^n)$ $O(n)$
Closest Pair Problem Khuller; Matias ( Closest Pair Problem) 1995 $O(n)$ $O(n)$, not sure if this is auxiliary
Square Matrix LU Decomposition Bunch; Hopcroft (Square Matrix LU Decomposition LU Decomposition) 1974 $O(n^{2.{37}6})$ $\tilde{O}(n^{2})$
Single String Search Bitap algorithm (Single String Search String Search) 1964 $O(mn)$ $O(m)$
Comparison Sorting Tree sort (Comparison Sorting Sorting) 1986 $O(n \log n)$ $O(n)$
Comparison Sorting Quick Sort (Comparison Sorting Sorting) 1961 $O(n^{2})$ $O(\log n)$
Comparison Sorting Tim Sort (Comparison Sorting Sorting) 2002 $O(n logn)$ $O(n)$
Comparison Sorting Cube Sort Parallel Implementation (Comparison Sorting Sorting) 1992 $O(n logn)$ $O(n)$
Comparison Sorting Shell Sort (Shell) (Comparison Sorting Sorting) 1959 $O(n^{2})$ $O({1})$
Comparison Sorting Shell Sort (Frank & Lazarus) (Comparison Sorting Sorting) 1960 $O(n^{1.5})$ $O({1})$
Comparison Sorting Shell Sort (Pratt) (Comparison Sorting Sorting) 1971 $O(n \log^{2} n)$ $O({1})$
Comparison Sorting Shell Sort (Sedgewick) (Comparison Sorting Sorting) 1986 $O(n^{1.{3}3})$ $O({1})$
Comparison Sorting Bitonic Merge Sort Parallel Implementation (Comparison Sorting Sorting) 1968 $O(\log^{2} n)$ $O({1})$
Comparison Sorting Thorup's Sorting Algorithm (Comparison Sorting Sorting) 2002 $O(n \log \log n)$ $O(n)$
Non-Comparison Sorting Naive sorting (Non-Comparison Sorting Sorting) 1940 $O(n^{2})$ $O({1})$
Non-Comparison Sorting Flash Sort (Non-Comparison Sorting Sorting) 1998 $O(n^{2})$ $O(n)$
Non-Comparison Sorting Bead Sort (Non-Comparison Sorting Sorting) 2002 $O(n)$ $O(n^{2})$
Non-Comparison Sorting Burst Sort (Non-Comparison Sorting Sorting) 2004 $O(wn)$ $O(wn)$
Non-Comparison Sorting Spreadsort (Non-Comparison Sorting Sorting) 2002 $O(n \log n)$ $O(n)$?
kth Order Statistic Hashing (kth Order Statistic kth Order Statistic) 1940 $O(n)$ $O(n)$
Matrix Chain Ordering Problem T. C. Hu ; M. T. Shing (Matrix Chain Ordering Problem Matrix Chain Multiplication) 1982 $O(n \log n)$ $O(n)$
LCS Hunt and Szymanski (LCS Longest Common Subsequence) 1977 $O((n + p) \log n)$ $O(p + n)$
LCS Mukhopadhyay (LCS Longest Common Subsequence) 1980 $O((n + p) \log n)$ $O(p + n)$
Maximum Flow Dantzig ( Maximum Flow) 1951 $O(V^{2}EU)$ $O(VE)$?
Maximum Flow Dinitz (with dynamic trees) ( Maximum Flow) 1973 $O(VE \log U)$ $O(E)$
Maximum Flow Cherkassky ( Maximum Flow) 1977 $O(V^{2}E^{0.5})$ $O(E)$
Maximum Flow Sleator & Tarjan ( Maximum Flow) 1983 $O(VE \log V)$ $O(E)$
Maximum Flow Goldberg & Tarjan ( Maximum Flow) 1986 $O(VE \log (V^{2}/E))$ $O(E)$
Maximum Flow Ahuja & Orlin ( Maximum Flow) 1987 $O(VE + V^{2} \log U)$ $O(ELogU)$
st-Maximum Flow Cheriyan & Hagerup (st-Maximum Flow Maximum Flow) 1989 $O(VE \log V)$ $O(V + E)$
st-Maximum Flow Cheriyan et al. (st-Maximum Flow Maximum Flow) 1990 $O(V^{3} / \log V)$ $O(V + E)$
st-Maximum Flow Alon (st-Maximum Flow Maximum Flow) 1990 $O(VE + V^{2.{6}6} \log V)$ $O(V + E)$
st-Maximum Flow King et al. (KRT) (st-Maximum Flow Maximum Flow) 1992 $O(VE + V^{2+\epsilon})$ $O(V + E)$
st-Maximum Flow Phillips & Westbrook (st-Maximum Flow Maximum Flow) 1993 $O(VE(\log(V;V/E)) + V^{2}(\log V)^{2} )$ $O(V + E)$
Integer Maximum Flow Goldberg & Rao (Integer Maximum Flow Maximum Flow) 1997 $O(E^{1.5} \log(V^{2}/E) \log U)$ $O(V + E)$
Integer Maximum Flow Goldberg & Rao (Integer Maximum Flow Maximum Flow) 1997 $O(V^{0.{6}6}E \log(V^{2}/E) \log U)$ $O(V + E)$
st-Maximum Flow James B Orlin's + KRT (King; Rao; Tarjan)'s algorithm (st-Maximum Flow Maximum Flow) 2013 $O(VE)$ $O(V + E)$
3-Graph Coloring Lawler (3-Graph Coloring Graph Coloring) 1976 $O(m*n*{3}^{(n/{3})}) ~ O(mn({1.445})^n)$ $O(n)$
3-Graph Coloring Schiermeyer (3-Graph Coloring Graph Coloring) 1994 $O({1.415}^n)$ $O(nm+n^{2})$ loose bound, possibly $O(n+m)$?
3-Graph Coloring Beigel & Eppstein (3-Graph Coloring Graph Coloring) 1995 $O({1.3446}^n)$ $O(n^{2})$?
3-Graph Coloring Beigel & Eppstein (3-Graph Coloring Graph Coloring) 2000 $O({1.3289}^n)$ $O(n^{2})$?
4-Graph Coloring Lawler (4-Graph Coloring Graph Coloring) 1976 $O((m + n)*{2}^n)$ $O(n)$
4-Graph Coloring Byskov (4-Graph Coloring Graph Coloring) 2004 $O({1.7504}^n)$ $O(n^{2})$?
Positive Definite Matrix Conjugate Gradient (Positive Definite Matrix Linear System) 1952 $O(m k^{0.5})$ $O(m)$
Sparse Linear System Harrow (Quantum) (Sparse Linear System Linear System) 2009 $O(k^{2}*\log n)$ $O(\log n)$
Linear Programming Karmarkar's algorithm ( Linear Programming) 1984 $O(n^{3.5} L^{2} logL loglogL)$ $O(nmL)$
Linear Programming Simplex Algorithm ( Linear Programming) 1947 $O({2}^n*poly(n, m))$ $O(nm)$
Linear Programming Terlaky's Criss-cross algorithm ( Linear Programming) 1985 $O({2}^n*poly(n, m))$ $O(nm)$
Linear Programming Affine scaling ( Linear Programming) 1967 ? (originally $O(n^{3.5} L)$ but seems unclear) $O(nm+m^{2})$?
Linear Programming Cohen; Lee and Song ( Linear Programming) 2018 $O(n^{max(omega, {2.5}-alpha/{2}, {13}/{6})}*polylog(n, m, L))$, where omega is the exponent on matrix multiplication, alpha is the dual exponent of matrix multiplication;

currently $O(n^{2.37285956})$ || $O(nm+n^{2})$?

Linear Programming Lee and Sidford ( Linear Programming) 2015 $O((nnz(A) + n^{2}) n^{0.5})$ $O(nm+n^{2})$??
Reporting all intersection points, line segments Chazelle & Edelsbrunner (Reporting all intersection points, line segments Line segment intersection) 1992 $O( n \log n + k )$ $O(n+k)$ total?
Reporting all intersection points, line segments CHAZELLE (Reporting all intersection points, line segments Line segment intersection) 1986 $O( n*log^{2}(n)/(log log n) + k)$ $O(n+k)$ total (and possibly auxiliary as well?)
Reporting all intersection points, convex polygons NIEVERGELT. J.. AND PREPARATA (Section 3) (Reporting all intersection points, convex polygons Line segment intersection) 1982 $O( n \log n + k )$ $O(n)$
Reporting all intersection points, generalized segments Jean-Daniel Boissonnat and Franco P. Preparata. (Reporting all intersection points, generalized segments Line segment intersection) 1997 $O(n \log n + k \log n)$ $O(n)$
Reporting all intersection points, generalized segments Balaban. (Reporting all intersection points, generalized segments Line segment intersection) 1995 $O(n \log n + k )$ $O(n)$
Reporting all intersection points, generalized segments Boissonnat; Snoeyink (Reporting all intersection points, generalized segments Line segment intersection) 1999 $O(n \log n + k )$ $O(n)$
Reporting all intersection points, line segments Goodrich (Reporting all intersection points, line segments Line segment intersection) 1989 $O(\log^{2}(n))$ $O(n+k)$ total?
2-dimensional Graham (2-dimensional Convex Hull) 1972 $O(n \log n)$ $O(n)$
2-dimensional W. Eddy Quickhull (2-dimensional Convex Hull) 1977 $O(nh)$ $O(h)$?
2-dimensional; 3-dimensional Preparata and Hong (2-dimensional; 3-dimensional Convex Hull) 1977 $O(nlogn)$ $O(n)$?
2-dimensional Andrew's algorithm (2-dimensional Convex Hull) 1979 $O(nlogn)$ $O(n)$
2-dimensional The ultimate planar convex hull algorithm (2-dimensional Convex Hull) 1986 $O(n log h)$ $O(n)$
2-dimensional; 3-dimensional Chan's algorithm (2-dimensional; 3-dimensional Convex Hull) 1996 $O(n log h)$ $O(n)$
2-dimensional Miller; Stout (2-dimensional Convex Hull) 1988 $O(logn)$ time using

$O(n)$ processors || $O(n)$ total?

SCCs Kosaraju's algorithm (SCCs Strongly Connected Components) 1978 $O(V+E)$ $O(V+E)$
SCCs Tarjan's strongly connected components algorithm (SCCs Strongly Connected Components) 1972 $O(V+E)$ $O(V)$
SCCs Path-based strong components algorithm; Dijkstra (SCCs Strongly Connected Components) 1976 $O(V+E)$ $O(V)$
SCCs Fleischer forward-backward (FB) algorithm (SCCs Strongly Connected Components) 2003 $O(E\log V+V)$ $O(V+E)$
SCCs Pearce (SCCs Strongly Connected Components) 2016 $O(V+E)$ $O(V)$
SCCs Path-based depth-first search Gabow (SCCs Strongly Connected Components) 2000 $O(V+E)$ $O(V+E)$ total, $O(V)$ auxiliary?
Transitive Closure Paul Purdom (Transitive Closure Strongly Connected Components) 1970 $O(V^{2}+VE)$ $O(V^{2})$
SCCs Lowe’s Algorithm (SCCs Strongly Connected Components) 2014 $O(V^{2})$ $O(V)$ per processor
SCCs Renault’s Algorithm (SCCs Strongly Connected Components) 2009 $O(p*(V+E)*\alpha(V, E))$ $O(V)$ per processor
SCCs Couvreur (SCCs Strongly Connected Components) 1999 $O(V+E)$ $O(V)$?
SCCs Munro’s algorithm (SCCs Strongly Connected Components) 1971 $O(E + V \log V)$ $O(V)$?
SCCs OBF Algorithm (SCCs Strongly Connected Components) 2011 $O(V(V+E))$ $O(E+V^{2})$ total
SCCs CH Algorithm (SCCs Strongly Connected Components) 2004 $O(VE)$ $O(V+E)$?
SCCs Hong’s algorithm (SCCs Strongly Connected Components) 2013 $O(V(V+E))$ $O(V+E)$?
Undirected, General MST Borůvka's algorithm (Undirected, General MST Minimum Spanning Tree (MST)) 1926 $O(E \log V)$ $O(V)$ auxiliary
Undirected, General MST Prim's algorithm + adjacency matrix searching (Undirected, General MST Minimum Spanning Tree (MST)) 1957 $O(V^{2})$ $O(V)$ auxiliary
Undirected, General MST Prim's algorithm + Fibonacci heaps; Fredman & Tarjan (Undirected, General MST Minimum Spanning Tree (MST)) 1987 $O(E + V \log V)$ $O(V)$ auxiliary?
Undirected, General MST Kruskal's algorithm (Undirected, General MST Minimum Spanning Tree (MST)) 1956 $O(E \log E)$ $O(E)$ auxiliary
Undirected, General MST Yao's algorithm (Undirected, General MST Minimum Spanning Tree (MST)) 1975 $O(E \log \log V)$ $O(E)$ auxiliary?
Undirected, General MST Cheriton-Tarjan Algorithm (Undirected, General MST Minimum Spanning Tree (MST)) 1976 $O(E \log \log V)$ $O(E)$ auxiliary?
Undirected, General MST Filter Kruskal algorithm (Undirected, General MST Minimum Spanning Tree (MST)) 2009 $O(E \log V)$ $O(E)$ auxiliary?
Undirected, General MST Chazelle's algorithm (Undirected, General MST Minimum Spanning Tree (MST)) 2000 $O(E*\alpha(E, V))$ $O(E)$ auxiliary??
Undirected, General MST Thorup (reverse-delete) (Undirected, General MST Minimum Spanning Tree (MST)) 2000 $O(E \log V (\log \log V)^{3})$ $O(E)$ auxiliary?
k-dimensional space, l_m (or l_infty) norm Fortune and Hopcroft (k-dimensional space, l_m (or l_infty) norm Closest Pair Problem) 1979 $O(kn \log\log n+n*{3}^k)$ $O(n)$
k-dimensional space, l_m (or l_infty) norm F. Preparata and M. Shamos (k-dimensional space, l_m (or l_infty) norm Closest Pair Problem) 1986 $O(kn \log n)$ $O(kn)$?
k-dimensional space, l_m (or l_infty) norm Rabin' Algorithm (k-dimensional space, l_m (or l_infty) norm Closest Pair Problem) 1976 $O({3}^k*n^{2})$ $O(n)$
k-dimensional space, l_m (or l_infty) norm Bentley (k-dimensional space, l_m (or l_infty) norm Closest Pair Problem) 1980 $O(kn \log n)$ $O(kn)$?
k-dimensional space, l_m (or l_infty) norm Bentley; Shamos (k-dimensional space, l_m (or l_infty) norm Closest Pair Problem) 1976 $O(kn \log n)$ $O(kn)$?
2-dimensional space, l_m (or l_infty) norm Hinrichs; Nievergelt; Schorn (2-dimensional space, l_m (or l_infty) norm Closest Pair Problem) 1988 $O(n \log n)$ $O(n)$
2-dimensional space, Euclidean metric Shamos; Hoey (2-dimensional space, Euclidean metric Closest Pair Problem) 1975 $O(n \log n)$ $O(n)$
2-dimensional array representation Dyer (2-dimensional array representation Closest Pair Problem) 1980 $O(n)$ using $O(n^{2})$ processors $O(n^{2})$
general weights Bellman–Ford algorithm (Ford 1956) (general weights Shortest Path (Directed Graphs)) 1956 $O(V^{2} EL)$ $O(E)$
general weights Bellman–Ford algorithm (Shimbel 1955; Bellman 1958; Moore 1959) (general weights Shortest Path (Directed Graphs)) 1959 $O(VE)$ $O(V)$
Nonnegative Weights Bellman–Ford algorithm (Dantzig 1960) (Nonnegative Weights Shortest Path (Directed Graphs)) 1960 $O(V^{2} \log V)$ $O(E)$ (total)
Nonnegative Weights Dijkstra's algorithm with list (Whiting & Hillier 1960) (Nonnegative Weights Shortest Path (Directed Graphs)) 1960 $O(V^{2})$ $O(V)$
Nonnegative Weights Dijkstra's algorithm with binary heap (Johnson 1977) (Nonnegative Weights Shortest Path (Directed Graphs)) 1977 $O((E + V) \log V)$ $O(V)$
Nonnegative Weights Dijkstra's algorithm with Fibonacci heap (Fredman & Tarjan 1984; Fredman & Tarjan 1987) (Nonnegative Weights Shortest Path (Directed Graphs)) 1984 $O(E + V \log V)$ $O(V)$
Nonnegative Integer Weights Dijkstra's algorithm with Fibonacci heap (Johnson 1981; Karlsson & Poblete 1983) (Nonnegative Integer Weights Shortest Path (Directed Graphs)) 1981 $O(E \log \log L)$ $O(V+L)$
Nonnegative Weights Gabow's algorithm (Nonnegative Weights Shortest Path (Directed Graphs)) 1983 $O(E \log L/\log({2}+(E/V)))$ $O(V+E)$?
Nonnegative Integer Weights Gabow Ahuja Algorithm (Nonnegative Integer Weights Shortest Path (Directed Graphs)) 1990 $O(E + V*((\log(L))^{0.5}) )$ $O(E + \log C)$
Nonnegative Integer Weights Thorup's algorithm (Nonnegative Integer Weights Shortest Path (Directed Graphs)) 2004 $O(E + V min(log log V, log log L))$ $O(V)$? ("linear-space queue")
APSP on Dense Directed Graphs with Arbitrary Weights Shimbel Algorithm (APSP on Dense Directed Graphs with Arbitrary Weights All-Pairs Shortest Paths (APSP)) 1953 $O(n^{4})$ $O(n^{2})$
APSP Floyd–Warshall algorithm (APSP All-Pairs Shortest Paths (APSP)) 1962 $O(n^{3})$ $O(n^{2})$
APSP on Dense Undirected Unweighted Graphs; APSP on Sparse Undirected Unweighted Graphs Seidel's algorithm (APSP on Dense Undirected Unweighted Graphs; APSP on Sparse Undirected Unweighted Graphs All-Pairs Shortest Paths (APSP)) 1995 $O (n^{2.{37}3} \log n)$ $O(n^{2})$
APSP on Dense Directed Graphs with Arbitrary Weights Williams (APSP on Dense Directed Graphs with Arbitrary Weights All-Pairs Shortest Paths (APSP)) 2014 $O(n^{3} /{2}^{(\log n)^{0.5}})$ $O(n^{2})$
APSP on Dense Undirected Graphs with Arbitrary Weights; APSP on Sparse Undirected Graphs with Arbitrary Weights Pettie & Ramachandran (APSP on Dense Undirected Graphs with Arbitrary Weights; APSP on Sparse Undirected Graphs with Arbitrary Weights All-Pairs Shortest Paths (APSP)) 2002 $O(mn \log \alpha(m,n))$ -
APSP on Dense Undirected Graphs with Positive Integer Weights; APSP on Sparse Undirected Graphs with Positive Integer Weights Thorup (APSP on Dense Undirected Graphs with Positive Integer Weights; APSP on Sparse Undirected Graphs with Positive Integer Weights All-Pairs Shortest Paths (APSP)) 1999 $O(mn)$ $O(mn)$
APSP on Geometrically Weighted Graphs Chan (Geometrically Weighted) (APSP on Geometrically Weighted Graphs All-Pairs Shortest Paths (APSP)) 2009 $O(n^{2.{84}4})$ $O(l n^{2})$
APSP on Dense Directed Graphs with Arbitrary Weights; APSP on Dense Undirected Graphs with Arbitrary Weights Chan (APSP on Dense Directed Graphs with Arbitrary Weights; APSP on Dense Undirected Graphs with Arbitrary Weights All-Pairs Shortest Paths (APSP)) 2009 $O(n^{3} \log^{3} \log n / \log^{2} n)$ $O(n^{2})$
First Category Integer Factoring Trial division (First Category Integer Factoring Integer Factoring) 1202 $O({2}^{n/2})$ $O(n)$
First Category Integer Factoring Wheel factorization (First Category Integer Factoring Integer Factoring) 1940 $O({2}^{n/2})$ $O(n)$
First Category Integer Factoring Pollard's rho algorithm (First Category Integer Factoring Integer Factoring) 1975 - $O(n)$
First Category Integer Factoring Pollard's p − 1 algorithm (First Category Integer Factoring Integer Factoring) 1974 $O(B*log B*log^{2}(n)$)? $O(n+B)$
First Category Integer Factoring Williams' p + 1 algorithm (First Category Integer Factoring Integer Factoring) 1982 $O({2}^n)$ $O(n)$?
First Category Integer Factoring Lenstra elliptic curve factorization (First Category Integer Factoring Integer Factoring) 1987 $O(e^{(\sqrt(({1}+o({1}))n*log n))})$ $O(n)$?
First Category Integer Factoring Fermat's factorization method (First Category Integer Factoring Integer Factoring) 1894 $O({2}^n)$ $O(n)$?
First Category Integer Factoring Euler's factorization method (First Category Integer Factoring Integer Factoring) 1940 $O({2}^{(n/{2})})$ $O(n)$
Second Category Integer Factoring Dixon's algorithm (Second Category Integer Factoring Integer Factoring) 1981 $O(e^{({2} \sqrt({2}) \sqrt(n*logn))}){4} $O(n+(B/logB)$^{2})?
Second Category Integer Factoring Continued fraction factorization (CFRAC) (Second Category Integer Factoring Integer Factoring) 1931 $O(e^{\sqrt({2}n*logn)})$ $O(n+(B/logB)$^{2})?
Second Category Integer Factoring Quadratic sieve (Second Category Integer Factoring Integer Factoring) 1981 - $O(n+(B/logB)$^{2})?
Second Category Integer Factoring Rational sieve (Second Category Integer Factoring Integer Factoring) 1993 $O(e^{sqrt(({2}+o({1})$)n*logn)}) $O(n+(B/logB)$^{2})?
Second Category Integer Factoring Shanks's square forms factorization (SQUFOF) (Second Category Integer Factoring Integer Factoring) 2007 $O({2}^{n/4})$ $O(n)$?
Square Matrix LU Decomposition Closed formula (Square Matrix LU Decomposition LU Decomposition) 1975 $O(n \log n)$ -
Rectangular Matrix LU Decomposition Randomized LU Decomposition (Rectangular Matrix LU Decomposition LU Decomposition) 2016 $O(n^{3})$ $\tilde{O}(nl + ml)$
Square Matrix LU Decomposition David (Square Matrix LU Decomposition LU Decomposition) 2006 $O(n \log n)$ -
Square Matrix LU Decomposition Press, Teukolsky, Flannery (Square Matrix LU Decomposition LU Decomposition) 2007 $O(n^{3})$ $\tilde{O}(n)$
Informed Search Greedy Best-First Search (Informed Search Informed Search) 1959 $O(b^d)$ $O(b^d)$
Informed Search Incremental Heuristic Search ( Informed Search) 1968 $O(b^d)$ -
Informed Search Block A* (Informed Search Informed Search) 2011 $O(b^d)$ $O(b^d)$
Informed Search D* (Informed Search Informed Search) 1994 $O(b^d)$ $O(b^d)$
Informed Search Field D* (Informed Search Informed Search) 2006 $O(b^d)$ $O(b^d)$
Informed Search Fringe (Informed Search Informed Search) 2005 $O(b^d)$ $O(b^d)$
Single String Search Tuned Boyer-Moore algorithm (Single String Search String Search) 1991 $O(mn)$ $O(m + s)$
Edit sequence, global alignment FOGSAA (Edit sequence, global alignment Sequence Alignment) 2013 $O(mn)$ $O(mn)$?
convex polygonal window O(lg N) algorithm (convex polygonal window Line Clipping) 1994 $O(n*\log p)$ $O({1})$ auxiliary??
convex and non-convex polyhedral window Skala (convex and non-convex polyhedral window Line Clipping) 1996 $O(np)$? $O({1})$ auxiliary?
Multiplication Schönhage–Strassen algorithm ( Multiplication) 1971 $O(n \log n \log\log n)$ $O(n)$ auxiliary?
Multiplication Furer's algorithm ( Multiplication) 2007 $O(n \log n {2}^{O(\log*n)})$ $O(n)$ auxiliary?
Multiplication De ( Multiplication) 2008 $O(n \log n {2}^{O(\log*n)})$ $O(n)$ auxiliary?
Multiplication Harvey; Hoeven ( Multiplication) 2019 $O(n \log n)$ $O(n)$ auxiliary??
Multiplication Harvey; Hoeven; Lecerf ( Multiplication) 2015 $O(n \log n {2}^{({3} \log*n)})$ $O(n)$ auxiliary??
Multiplication Covanov and Thomé ( Multiplication) 2015 $O(n \log n {2}^{O(\log*n)})$ $O(n)$ auxiliary??
Multiplication Covanov and Thomé ( Multiplication) 2016 $O(n \log n {2}^{({3} \log*n)})$ $O(n)$ auxiliary??
Multiplication Harvey; Hoeven; Lecerf ( Multiplication) 2018 $O(n \log n {2}^{({2} \log*n)})$ $O(n)$ auxiliary??
Mutual Exclusion Lamport's bakery algorithm ( Mutual Exclusion) 1974 $O(n)$ $O({1})$ per process, $O(n)$ total?
Mutual Exclusion Szymanski's algorithm ( Mutual Exclusion) 1988 $O(n)$ $O({1})$ per process, $O(n)$ total?
Mutual Exclusion Taubenfeld's black-white bakery algorithm ( Mutual Exclusion) 2004 $O(n)$ $O({1})$ per process, $O(n)$ total?
Mutual Exclusion Maekawa's algorithm ( Mutual Exclusion) 1985 $O(n^{0.5})$ $O({1})$ per process, $O(n)$ total?
Mutual Exclusion Raymond's algorithm ( Mutual Exclusion) 1997 $O(\log n)$? (originally this had $O(n)$) $O({1})$ per process, $O(n)$ total?
Mutual Exclusion Suzuki-Kasami's algorithm ( Mutual Exclusion) 1985 $O(n)$? (originally this had $O(logn)$) $O({1})$ per process, $O(n)$ total?
Shown Surface Determination Painter's algorithm/Newell's algorithm ( Shown Surface Determination) 1972 $O(n*log(n)$+np) $O(p+n)$
Shown Surface Determination Warnock's algorithm ( Shown Surface Determination) 1969 $O(np)$ $O(p+n)$?
Shown Surface Determination Ray tracing ( Shown Surface Determination) 1982 $O(np)$ $O(p+n)$?
Shown Surface Determination Binary space partitioning (BSP) ( Shown Surface Determination) 1969 $O(n^{2}+p)$? (previously said $O(n^{2}logn)$ $O(n^{2}+p)$?
Shown Surface Determination Z-buffering ( Shown Surface Determination) 1974 $O(np)$ $O(p+n)$
Shown Surface Determination S-buffer/Scanline Rendering ( Shown Surface Determination) 1980 $O(E+p)$? $O(p+n)$?
Eigenpair with the Largest Eigenvalue Power Iteration (Eigenpair with the Largest Eigenvalue Eigenvalues (Iterative Methods)) 1929 $O(n^{2})$ $O(n)$
Delaunay Triangulation Fortune ( Delaunay Triangulation) 1987 $O(n \log n)$ $O(n)$
1D Maximum Subarray Gries (1D Maximum Subarray Maximum Subarray Problem) 1982 $O(n)$ $O({1})$ auxiliary
1D Maximum Subarray Bird (1D Maximum Subarray Maximum Subarray Problem) 1989 $O(n)$ $O({1})$ auxiliary
1D Maximum Subarray Ferreira, Camargo, Song (1D Maximum Subarray Maximum Subarray Problem) 2014 $O(\log n)$ $O(n)$ auxiliary
Integer Relation HJLS algorithm ( Integer Relation) 1986 $O(n^{3}(n+k))$ $O(n^{2})$ -- but requires infinite precision with large n or else it becomes unstable
Dining Philosophers Problem Resource hierarchy solution (Dining Philosophers Problem Deadlock Avoidance) 1965 $O({2}^n)$ $O(n)$
Dining Philosophers Problem Arbitrator solution (Dining Philosophers Problem Deadlock Avoidance) 1965 $O({2}^n)$ $O({1})$
Approximate TSP Applegate et al. (Approximate TSP The Traveling-Salesman Problem) 2006 $O(V^{2} E)$ -
The Traveling-Salesman Problem Johnson; D. S.; McGeoch; L. A. ( The Traveling-Salesman Problem) 1997 $O({2}^{(p(n)$}) -
The Traveling-Salesman Problem Gutina; Gregory; Yeob; Anders; Zverovich; Alexey ( The Traveling-Salesman Problem) 2002 - -
Approximate TSP Rosenkrantz; D. J.; Stearns; R. E.; Lewis; P. M. (Approximate TSP The Traveling-Salesman Problem) 1974 $O(V^{2})$ $O({1})$
Approximate TSP Lin–Kernighan (Approximate TSP The Traveling-Salesman Problem) 1981 $O(V^{2})$ $O(V)$
De Novo Genome Assembly Overlap Layout Consensus (De Novo Genome Assembly De Novo Genome Assembly) 1987 $O(n^{2})$ $O(n^{2})$?
De Novo Genome Assembly Greedy SEQAID (De Novo Genome Assembly De Novo Genome Assembly) 1984 $O(n^{2})$? $O(n^{2})$?
Ray Tracing Dürer rendering algorithm ( Ray Tracing) 1956 $O(n^{2})$ -
Ray Tracing Appel's algorithm 1968 ( Ray Tracing) 1968 $O(n^{2})$ -
Ray Tracing Whitted's algorithm 1979 ( Ray Tracing) 1979 $O(n^{2})$ -
Ray Tracing J.-C. Nebel 1998 ( Ray Tracing) 1998 $O(n^{2})$ -
Ray Tracing A. Chalmers; T. Davis; and E. Reinhard 2002 ( Ray Tracing) 2002 $O(n^{2})$ -
Corner Detection Moravec's algorithm 1980 (Corner Detection Feature Detection) 1980 $O(n^{3})$ -
Corner Detection Förstner algorithm 1987 (Corner Detection Feature Detection) 1987 $O(n^{2} \log^{2} n)$ -
Corner Detection J. J. Koenderink and W. Richards 1988 (Corner Detection Feature Detection) 1988 $O(n^{3})$ -
Corner Detection Lindeberg (1994) (Corner Detection Feature Detection) 1994 $O(n^{2})$ -
Corner Detection Lindeberg (1998) (Corner Detection Feature Detection) 1998 $O(n^{2})$ -
Corner Detection K. Mikolajczyk; K. and C. Schmid LoG 2004 (Corner Detection Feature Detection) 2004 $O(n^{2})$ -
Corner Detection Lowe (2004) (Corner Detection Feature Detection) 2004 $O(n^{2})$ -
Corner Detection T. Lindeberg and J. Garding (1997) (Corner Detection Feature Detection) 1997 $O(n^{2})$ -
Corner Detection Lindeberg 2005 (Corner Detection Feature Detection) 2005 $O(n^{2})$ -
Corner Detection The Wang and Brady corner detection algorithm 1995 (Corner Detection Feature Detection) 1995 $O(n^{2})$ -
Corner Detection The Trajkovic and Hedley corner detector 1998 (Corner Detection Feature Detection) 1998 $O(n^{2} log^{2} n)$ -
Corner Detection FAST E. Rosten and T. Drummond 2006 (Corner Detection Feature Detection) 2006 $O(n^{3})$ -
Corner Detection Trujillo and Olague 2008 (Corner Detection Feature Detection) 2008 $O(n^{2})$ -
Corner Detection Geert Willems; Tinne Tuytelaars and Luc van Gool (2008) (Corner Detection Feature Detection) 2008 $O(n^{2})$ -
Corner Detection Tao Luo, Zaifeng Shi and Pumeng Wang (Corner Detection Feature Detection) 2019 $O(n^{2})$ -
Blob Detection T. Lindeberg DoG 2012 (Blob Detection Feature Detection) 2012 $O(n^{2})$ -
Blob Detection T. Lindeberg DoG 2015 (Blob Detection Feature Detection) 2015 $O(n \log n)$ -
Blob Detection SIFT Algorithm Lowe 2004 (Blob Detection Feature Detection) 2004 $O(n^{3})$ -
Blob Detection Hessain Determinant Lindeberg 1994 (Blob Detection Feature Detection) 1994 $O(n^{3})$ -
Blob Detection Hessain Determinant Lindeberg 1998 (Blob Detection Feature Detection) 1998 $O(n^{3})$ -
Blob Detection SURF Descriptor 2006 (Blob Detection Feature Detection) 2006 $O(n^{2})$ -
Blob Detection Hessian-Laplace Mikolajczyk and Schmid 2004 (Blob Detection Feature Detection) 2004 $O(n^{3})$ -
Blob Detection Spatio-temporal Geert Willems; Tinne Tuytelaars and Luc van Gool (2008) (Blob Detection Feature Detection) 2008 $O(n^{2})$ -
Blob Detection Lindeberg's watershed-based grey-level blob detection algorithm 1991 (Blob Detection Feature Detection) 1991 $O(n^{3})$ -
Blob Detection Maximally stable extremal regions Matas 2002 (Blob Detection Feature Detection) 2002 $O(n^{2} log^{3} n)$ -
Blob Detection A. Baumberg. 2000 (Blob Detection Feature Detection) 2000 $O(n^{3})$ -
Blob Detection Y. Dufournaud; C. Schmid; and R. Horaud 2000 (Blob Detection Feature Detection) 2000 $O(n^{2} \log\log n)$ -
Blob Detection local scale-invariant Lowe 1999 (Blob Detection Feature Detection) 1999 $O(n^{3})$ -
Blob Detection T. Tuytelaars and L. Van Gool 2000 (Blob Detection Feature Detection) 2000 $O(n^{3})$ -
Culling view frustum culling (Culling Culling) 2008 $O(n^{2})$ -
Culling Sector-Based Culling (Culling Culling) 1991 $O(n^{2})$ -
Culling Occlusion Culling (Culling Culling) 1986 $O(n^{2})$ -
Culling Contribution Culling (Culling Culling) 1987 $O(n^{2})$ -
Texture Synthesis Kwatra 2003 (Texture Synthesis Texture Synthesis) 2003 $O(n^{3})$ -
Texture Synthesis CNN Based Gatys; Leon A 2001 (Texture Synthesis Texture Synthesis) 2001 $O(n^{3})$ -
Diffuse Reflection P.Hanrahan and W.Krueger 1993 (Diffuse Reflection Texture Mapping) 1993 $O(k n^{2})$ -
Diffuse Reflection H.W.Jensen 2001 (Diffuse Reflection Texture Mapping) 2001 $O(k^{3} n)$ -
Diffuse Reflection He; X. D.; Torrance; K. E.; Sillion; 1991 (Diffuse Reflection Texture Mapping) 1991 $O(k n^{2})$ -
Diffuse Reflection Kajiya; J. Anisotropic Reflection Models 1985 (Diffuse Reflection Texture Mapping) 1985 $O(k n^{2})$ -
Diffuse Reflection Nakamae; E.; Kaneda; K.; Okamoto; T.; and Nishita 1990 (Diffuse Reflection Texture Mapping) 1990 $O(k^{3} n^{2})$ -
Diffuse Reflection Cabral; B.; Max; N.; and Springmeyer; R 1990 (Diffuse Reflection Texture Mapping) 1990 $O(k n^{2})$ -
Diffuse Reflection Westin; S. H.; Arvo; J. R.; and Torrance; K. E 1992 (Diffuse Reflection Texture Mapping) 1992 $O(k n^{2})$ -
Specular Reflection Phong (Specular Reflection Texture Mapping) 1971 $O(n^{3})$ -
Specular Reflection Blinn–Phong (Specular Reflection Texture Mapping) 1977 $O(n^{3})$ -
Specular Reflection Cook–Torrance (microfacets) (Specular Reflection Texture Mapping) 1973 $O(n^{2})$ -
Specular Reflection Ward anisotropic (Specular Reflection Texture Mapping) 1989 $O(n^{1.{6}7} \log^{2} n)$ -
Specular Reflection Hanrahan–Krueger (Specular Reflection Texture Mapping) 1995 $O(n^{2} \log n)$ -
Image Segmentation Linda G. Shapiro and George C. Stockman (2001) ( Image Segmentation) 2001 $O(n^{2})$ -
Image Segmentation Recursive Region Splitting ( Image Segmentation) 1978 $O(n^{2})$ -
Image Segmentation Barghout; Lauren Visual Taxometric approach ( Image Segmentation) 2014 $O(n \log n)$ -
Image Segmentation Dual clustering - Guberman ( Image Segmentation) 2012 $O(n \log n)$ -
Image Segmentation R. Nock and F. Nielsen Statistical Region Merging ( Image Segmentation) 2004 $O(n^{2})$ -
Image Segmentation Kass; Witkin and Terzopoulos ( Image Segmentation) 1987 $O(n^{2})$ -
Image Segmentation Chen's lambda-connected segmentation ( Image Segmentation) 1991 $O(n \log n)$ -
Image Segmentation S.L. Horowitz and T. Pavlidis - directed split and merge ( Image Segmentation) 1974 $O(n^{2})$ -
Image Segmentation David Mumford and Jayant Shah (1989) ( Image Segmentation) 1989 $O(n^{2})$ -
Image Segmentation Geman and Geman Markov random fields ( Image Segmentation) 1984 $O(n^{2})$ -
Image Segmentation Iterated conditional modes algorithm ( Image Segmentation) 1986 $O(n^{2})$ -
Image Segmentation watershed transformation 1979 ( Image Segmentation) 1979 $O(n^{2})$ -
Image Segmentation topological watershed ( Image Segmentation) 1997 $O(n^{2})$ -
Image Segmentation Florack and Kuijper ( Image Segmentation) 2000 $O(n^{2})$ -
Image Segmentation Bijaoui and Rué ( Image Segmentation) 1995 $O(n^{2})$ -
Image Segmentation Multi-scale MAP estimation - A. Bouman and M. Shapiro (2002) ( Image Segmentation) 2002 $O(n^{2})$ -
Image Segmentation Multiple Resolution segmentation - J. Liu and Y. H. Yang (1994) ( Image Segmentation) 1994 $O(n^{2})$ -
Image Segmentation Quasi-linear Topological watershed ( Image Segmentation) 2005 $O(n \log n)$ -
Image Segmentation Isometric graph partitioning - Leo Grady and Eric L. Schwartz (2006) ( Image Segmentation) 2006 $O(n^{2})$ -
Mesh Simplification Coplanar facets merging - M.J. De Haemer and M.J. Zyda 1991 (Mesh Simplification Mesh Simplification) 1991 - -
Mesh Simplification Coplanar facets merging - Hinker; P. and Hansen; C. 1993 (Mesh Simplification Mesh Simplification) 1993 - -
Mesh Simplification Coplanar facets merging - Kalvin; A. D.; Cutting; C. B.; Haddad; B. and Noz; M. E. 1991 (Mesh Simplification Mesh Simplification) 1991 - -
Mesh Simplification Coplanar facets merging - A.D. Kalvin and R.H. Taylor 1996 (Mesh Simplification Mesh Simplification) 1996 - -
Mesh Simplification Controlled vertex/edge/face decimation - M.E. Algorri and F. Schmitt 1996 (Mesh Simplification Mesh Simplification) 1996 - -
Mesh Simplification Controlled vertex/edge/face decimation - Guéziec 1996 (Mesh Simplification Mesh Simplification) 1996 - -
Mesh Simplification Controlled vertex/edge/face decimation - R. Ronfard and J. Rossignac 1996 (Mesh Simplification Mesh Simplification) 1996 - -
Mesh Simplification Controlled vertex/edge/face decimation - Hamann 1994 (Mesh Simplification Mesh Simplification) 1994 - -
Mesh Simplification Controlled vertex/edge/face decimation - Cohen; J.; Varshney; A 1996 (Mesh Simplification Mesh Simplification) 1996 - -
Mesh Simplification Re-tiling - Turk; G 1992 (Mesh Simplification Mesh Simplification) 1992 - -
Mesh Simplification Vertex clustering - Rossignac; J. and Borrel; P. 1993 (Mesh Simplification Mesh Simplification) 1993 - -
Mesh Simplification Vertex clustering - Low; K. L. and Tan; T. S 1997 (Mesh Simplification Mesh Simplification) 1997 - -
Mesh Simplification Vertex clustering - Reddy 1996 (Mesh Simplification Mesh Simplification) 1996 - -
Mesh Simplification Vertex clustering - Hoppe; H.; DeRose; T.; 1993 (Mesh Simplification Mesh Simplification) 1993 - -
Mesh Simplification Vertex clustering - Rossignac; J. and Borrel; P. 1997 (Mesh Simplification Mesh Simplification) 1997 - -
Mesh Simplification Wavelet-based - M.H. Gross; O.G. Staadt and R. Gatti 1996 (Mesh Simplification Mesh Simplification) 1996 - -
Mesh Simplification Wavelet-based - D.J. Hebert and H-J. Kim 1995 (Mesh Simplification Mesh Simplification) 1995 - -
Mesh Simplification Wavelet-based - Certain; A.; Popovic; J.; 1996 (Mesh Simplification Mesh Simplification) 1996 - -
Mesh Simplification Wavelet-based - Eck; M.; DeRose; T.; 1995 (Mesh Simplification Mesh Simplification) 1995 - -
Mesh Simplification Simplification via intermediate hierarchical rep-resentation - Andujar 1996 (Mesh Simplification Mesh Simplification) 1996 - -
Mesh Simplification Simplification via intermediate hierarchical rep-resentation - He; T.; Hong; L.; Kaufman 1995 (Mesh Simplification Mesh Simplification) 1995 - -
Mesh Simplification Simplification via intermediate hierarchical rep-resentation - He; T.; Hong; 1996 (Mesh Simplification Mesh Simplification) 1996 - -
POMDPs Hauskrecht; 2000; (POMDPs POMDPs) 2000 - -
POMDPs Pineau; Gordon; & Thrun; 2003; (POMDPs POMDPs) 2003 - -
POMDPs Braziunas & Boutilier; 2004; (POMDPs POMDPs) 2004 - -
POMDPs Poupart; 2005; (POMDPs POMDPs) 2005 - -
POMDPs Smith & Simmons; 2005; (POMDPs POMDPs) 2005 - -
POMDPs Spaan & Vlassis; 2005 (POMDPs POMDPs) 2005 - -
POMDPs Satia & Lave; 1973; (POMDPs POMDPs) 1973 - -
POMDPs Washington; 1997; (POMDPs POMDPs) 1997 - -
POMDPs Barto;Bradtke; & Singhe; 1995; (POMDPs POMDPs) 1995 - -
POMDPs Paquet; Tobin; & Chaib-draa; 2005; (POMDPs POMDPs) 2005 - -
POMDPs McAllester & Singh; 1999; (POMDPs POMDPs) 1999 - -
POMDPs Bertsekas & Castanon; 1999; (POMDPs POMDPs) 1999 - -
POMDPs Shani; Brafman; & Shimony; 2005 (POMDPs POMDPs) 2005 - -
Rasterization Digital Differential Analyzer (DDA) (Rasterization Rasterization) 1983 $O(n)$ $O({1})$
Rasterization Bresenham Algorithm (Rasterization Rasterization) 1962 $O(n)$ $O({1})$
Environment Mapping Blinn and Newell (Environment Mapping Texture Mapping) 1976 - -
Environment Mapping Nate Green (Environment Mapping Texture Mapping) 1986 $O(n^{4})$ -
Environment Mapping Sphere mapping (Environment Mapping Texture Mapping) 1984 - -
Environment Mapping Heidrich; W.; and H.-P. Seidel (Environment Mapping Texture Mapping) 1998 $O(n^{3})$ -
Environment Mapping Emil Praun (Environment Mapping Texture Mapping) 2003 $O(n^{3})$ -
Environment Mapping Mauro Steigleder (Environment Mapping Texture Mapping) 2005 - -
Environment Mapping HEALPix mapping Wong (Environment Mapping Texture Mapping) 2008 $O(n^{2})$ -
Occupancy Grid Mapping Maximum a Posteriori Occupancy Mapping (Occupancy Grid Mapping Occupancy Grid Mapping) 2004 $O(n^{3})$ -
SLAM Algorithms FastSlam (SLAM Algorithms SLAM Algorithms) 2003 $O(m*\log n)$ per iteration $O(mn)$?
SLAM Algorithms srba (SLAM Algorithms SLAM Algorithms) 2002 $O(n^{2})$ $O(n^{2})$?
Change-Making Problem Probabilistic Convolution Tree (Change-Making Problem Change-Making Problem) 2014 $O(n \log n)$ $O(n log n)$
Comparison Sorting Odd Even Sort Parallel Implementation (Comparison Sorting Sorting) 1972 $O(n^{2})$ $O({1})$
Non-Comparison Sorting Spaghetti Sort Parallel Implementation (Non-Comparison Sorting Sorting) 1984 $O(n)$ $O({1})$ auxiliary? per processor?
Approximate MCSP Heejo Lee; Jong Kim; Sungje Hong; and Sunggu Lee (Approximate MCSP Matrix Chain Multiplication) 1997 $O(n^{2})$ $O(n^{2})$?
Approximate MCOP Prakesh Ramanan (Approximate MCOP Matrix Chain Multiplication) 1996 $O(log^{4} n)$ $O(n)$?
Matrix Chain Scheduling Problem Czumaj (Matrix Chain Scheduling Problem Matrix Chain Multiplication) 1993 $O(log^{3} n)$ $O(n^{2})$?
LCS Hsu and Du (Scheme 2) (LCS Longest Common Subsequence) 1984 $O(rm \log(n/r)$ + rm) $O(rm)$
LCS Apostolico and Guerra (HS1 Algorithm) (LCS Longest Common Subsequence) 1987 $O(m \log n +p \log({2}mn/p)$) $O(p + n)$
LCS Kuo and Cross (LCS Longest Common Subsequence) 1989 $O(p + n(r+\log n)$) $O(p + n)$
LCS Rick (LCS Longest Common Subsequence) 1995 $O(sn + \min\{r(n - r )$, rm\}) $O(sn + p)$
LCS Rick (LCS Longest Common Subsequence) 1995 $O(sn + \min\{rm, sd\})$ $O(sn + p)$
LCS Hirschberg (LCS Longest Common Subsequence) 1977 $O(rn + n \log n)$ $O(n + p)$
LCS Hsu and Du (Scheme 1) (LCS Longest Common Subsequence) 1984 $O(rm \log(n/m)$ + rm) $O(rm)$
LCS Apostolico and Guerra (Algorithm 2) (LCS Longest Common Subsequence) 1987 $O(rm + sn + n \log s)$ $O(p + sn)$
LCS Chin and Poon (LCS Longest Common Subsequence) 1991 $O(sn + \min\{sp, rm\})$ $O(p + n)$
LCS Nakatsu et al. (LCS Longest Common Subsequence) 1982 $O(n(m-r)$) $O(m^{2})$
LCS Miller and Myers (LCS Longest Common Subsequence) 1985 $O(n(m-r)$) $O(m^{2})$
LCS Wu et al. (LCS Longest Common Subsequence) 1990 $O(n(m-r)$) $O(m^{2})$?
Maximum Flow Ahuja et al. ( Maximum Flow) 1987 $O(VELog(V(LogU)$^{0.5} / E)) -
3-Graph Coloring Robson (3-Graph Coloring Graph Coloring) 1986 $O({1.2108}^n)$ -
3-Graph Coloring Schöning (3-Graph Coloring Graph Coloring) 1999 $O({1.333}^n)$ -
3-Graph Coloring Hirsch (3-Graph Coloring Graph Coloring) 1998 $O({1.239}^n)$ -
3-Graph Coloring Johnson (3-Graph Coloring Graph Coloring) 1988 $O({1.4422}^n)$ -
3-Graph Coloring Alon and Kahale (3-Graph Coloring Graph Coloring) 1997 $O({1.24}^n)$ -
Convex Hull Incremental convex hull algorithm; Michael Kallay ( Convex Hull) 1984 $O(n \log n)$ -
Undirected, General MST Bader & Cong Parallel Implementation (Undirected, General MST Minimum Spanning Tree (MST)) 2006 $O(E \log(V)$/p) $O(V)$ total
First Category Integer Factoring Special number field sieve (First Category Integer Factoring Integer Factoring) 1940 $O(exp(({1}+o({1})$)({32}n/{9})^{({1}/{3})}(log n)^{({2}/{3})}) heuristically? $O(n^{2/3})$
Second Category Integer Factoring General number field sieve (Second Category Integer Factoring Integer Factoring) 1996 $O(exp(({1}+o({1})$)({64}n/{9})^{({1}/{3})}(log n)^{({2}/{3})}) heuristically? $O(n^{2/3})$
Second Category Integer Factoring Shor's algorithm Quantum Implementation (Second Category Integer Factoring Integer Factoring) 1994 $O(n)$ $O(n)$
Single String Search Two-way String-Matching Algorithm (Single String Search String Search) 1991 $O(n + m)$ $O({1})$
Single String Search String-Matching with Finite Automata (Single String Search String Search) 1940 $O(mn)$ $O(m)$
Single String Search Quick-Skip Searching (Single String Search String Search) 2012 $O(mn)$ $O(m)$
Single String Search Fast Hybrid Algorithm (Single String Search String Search) 2017 $O(n+m)$+ $O(m+s)$ $O(m)$
Single String Search Backward Non-Deterministic DAWG Matching (BNDM) (Single String Search String Search) 1998 $O(n+m)$ $O(sm)$
Multiple String Search Commentz-Walter Algorithm (Multiple String Search String Search) 1979 $O(mn)$ $O(km)$
Multiple String Search Aho–Corasick (AC) Algorithm (Multiple String Search String Search) 1975 $O(n + m + z)$ $O(km)$
Single String Search Boyer-Moore-Horspool (BMH) (Single String Search String Search) 1980 $O(mn + s)$ $O(s)$
Single String Search Raita Algorithm (Single String Search String Search) 1991 $O(mn + s)$ $O(s)$
Single String Search BOM (Backward Oracle Matching) (Single String Search String Search) 1999 $O(m)$ + $O(mn)$ $O(m)$
Single String Search Apostolico–Giancarlo Algorithm (Single String Search String Search) 1986 $O(m + s)$ + $O(n)$ $O(m)$
Edit Sequence, constant-size alphabet Gapped BLAST (Edit Sequence, constant-size alphabet Sequence Alignment) 1997 $O(mn)$ $O(mn)$?
Edit Sequence, constant-size alphabet Basic Local Alignment Search Tool (BLAST) (Edit Sequence, constant-size alphabet Sequence Alignment) 1990 $O(mn)$ $O(mn)$?
Joins Nested loop join ( Joins) 1960 $O(nm)$ $O({1})$
Joins Sort merge join ( Joins) 1960 $O(nlogn + mlogm)$ $O(n+m)$?
Joins Hash join ( Joins) 1960 $O(n+m)$ $O(n+m)$?
Bipartite Graph MCM Ford–Fulkerson algorithm (Bipartite Graph MCM Maximum Cardinality Matching) 1956 $O(VE)$ $O(E)$
Bipartite Graph MCM Hopcroft–Karp algorithm (Bipartite Graph MCM Maximum Cardinality Matching) 1973 $O((V^{0.5})$E) $O(V)$
Bipartite Graph MCM Mucha; Sankowski (planar) (Bipartite Graph MCM Maximum Cardinality Matching) 2006 $O(V^{(\omega/{2})$}) where omega is the exponent on matrix multiplication $O(V \log V)$???
Bipartite Graph MCM Madry's algorithm (Bipartite Graph MCM Maximum Cardinality Matching) 2013 $O(E^{10/7}*polylog(V)$) $O(E + V)$
Bipartite Graph MCM Chandran and Hochbaum (Bipartite Graph MCM Maximum Cardinality Matching) 2011 $O(min(V*k, E)$+sqrt(k)*min(k^{2}, E)) $O(E)$??
General Graph MCM Blum (General Graph MCM Maximum Cardinality Matching) 1990 $O((V^{0.5})$E) $O(E)$??
General Graph MCM Gabow; Tarjan (General Graph MCM Maximum Cardinality Matching) 1991 $O((V^{0.5})$E) $O(E)$?
General Graph MCM Mucha, Sankowski (general) (General Graph MCM Maximum Cardinality Matching) 2004 $O(V^{2.{37}6})$ $O(V^{2})$??
Planar Bipartite Graph Perfect Matching Klein (section 5) (Planar Bipartite Graph Perfect Matching Maximum Cardinality Matching) 1997 $O(V^{({4}/{3})$} logV) $O(V^{({4}/{3})$})?
Key Exchange Diffie–Hellman key exchange (Key Exchange Key Exchange) 1978 $O(mult(n)$*n) where mult(n) is running time on n-bit multiplication $O(n)$
Key Exchange Elliptic-curve Diffie-Hellman (ECDH) (Key Exchange Key Exchange) 2006 $O(mult(n)$*n^{2})? where mult(n) is running time on n-bit multiplication $O(n)$
2-thread Mutual Exclusion Dekker's algorithm (2-thread Mutual Exclusion Mutual Exclusion) 1963 $O(n)$ -
Mutual Exclusion Peterson's algorithm ( Mutual Exclusion) 1981 $O(n)$ $O(n)$ total
Mutual Exclusion Naimi-Trehel's algorithm ( Mutual Exclusion) 1996 $O(\log n)$ $O({1})$ per process, $O(n)$ total?
Mutual Exclusion Chan-Singhal-Liu ( Mutual Exclusion) 1990 $O(\log n)$ $O({1})$ per process, $O(n)$ total?
Inexact Laplacian Solver Spielman, Teng (Inexact Laplacian Solver SDD Systems Solvers) 2004 $O(m \log^c n)$ $O(n)$
Inexact Laplacian Solver Vaidya (Inexact Laplacian Solver SDD Systems Solvers) 1990 $O(mn^{({3}/{4})$}) $O(n)$
Inexact Laplacian Solver Gremban; Miller; Zagha (Inexact Laplacian Solver SDD Systems Solvers) 1995 $O(n^{2})$ $O(n^{2})$
Inexact Laplacian Solver Bern; Gilbert; Hendrickson (Inexact Laplacian Solver SDD Systems Solvers) 2006 $O(n \log \log n)$ -
Inexact Laplacian Solver Boman; Hendrickson (Inexact Laplacian Solver SDD Systems Solvers) 2003 $\tilde{O}(mn^{({1}/{2})})$ -
Inexact Laplacian Solver Boman; Chen; Hendrickson; Toledo (Inexact Laplacian Solver SDD Systems Solvers) 2004 $O(n \log({1}/ϵ)$ ) $O(n)$
Inexact Laplacian Solver Koutis; Miller and Peng (Inexact Laplacian Solver SDD Systems Solvers) 2010 $\tilde{O}(m \log n)$ $O(n)$
Inexact Laplacian Solver Koutis; Miller and Peng (Inexact Laplacian Solver SDD Systems Solvers) 2011 $\tilde{O}(m \log n)$ $O(n)$
Inexact Laplacian Solver Blelloch; Koutis; Miller; Tangwongsan (Inexact Laplacian Solver SDD Systems Solvers) 2010 $O(n \log n)$ m + $O(n/\log n)$
SDD Systems Solvers Briggs; Henson; McCormick ( SDD Systems Solvers) 2000 $O(n^{1.{2}5} \log \log n)$ -
Inexact Laplacian Solver Kelner; Orecchia; Sidford; Zhu (Inexact Laplacian Solver SDD Systems Solvers) 2013 $O(m \log^{2} (n)$ \log \log n) $O(n)$
Inexact Laplacian Solver Lee; Peng; Spielman (Inexact Laplacian Solver SDD Systems Solvers) 2015 $O(n)$ $O(n)$
Inexact Laplacian Solver Daitch; Spielman (Inexact Laplacian Solver SDD Systems Solvers) 2007 $O(n^{5/4} (\log^{2} (n)$ \log\log n)^{3/4} \log({1}/ϵ)) $O(n)$
Exact Laplacian Solver Gaussian Elimination (Exact Laplacian Solver SDD Systems Solvers) -150 $O(n^{3})$ $O(n^{2})$
Exact Laplacian Solver Naive Implementation (Exact Laplacian Solver SDD Systems Solvers) 1940 $O(n!)$ $O(n^{2})$
Cycle Detection Floyd's tortoise and hare algorithm ( Cycle Detection) 1967 $O((\lambda + \mu)$ t_f) $O({1})$
Cycle Detection Brent's algorithm ( Cycle Detection) 1973 $O((\lambda + \mu)$ t_f) $O({1})$
Cycle Detection Gosper's algorithm ( Cycle Detection) 1978 $O((\lambda + \mu)$ log(\lambda + \mu) t_f) \Theta(log(\mu + \lambda))
General Permutations Fisher–Yates/Knuth shuffle (General Permutations Generating Random Permutations) 1938 $O(n^{2})$ $O(n)$
General Permutations Durstenfeld's Algorithm 235 (General Permutations Generating Random Permutations) 1964 $O(n)$ $O({1})$
General Permutations Radix sorting method (General Permutations Generating Random Permutations) 1887 $O(n)$ $O(n)$
Cyclic Permutations Sattolo's algorithm (Cyclic Permutations Generating Random Permutations) 1986 $O(n)$ $O({1})$
ILP;MILPs Gomory's cutting method (ILP;MILPs Convex Optimization (Non-linear)) 1953 $O({2}^n*poly(n, m)$)? (previously $O(n^{3})$) $O(nm+m^{2})$
General, Constrained optimization Wolfe; Lemaréchal; Kiwiel (General, Constrained optimization Convex Optimization (Non-linear)) 1964 $O(n^{4})$ $O(n+L)$??
General, Constrained optimization Ellipsoid method (General, Constrained optimization Convex Optimization (Non-linear)) 1971 $O(n^{2} \log n)$ $O(nmL)$
General, Constrained optimization Subgradient method (General, Constrained optimization Convex Optimization (Non-linear)) 1981 $O(n^{2} )$ $O(n+L)$?
Stochastic optimization Dual subgradients and the drift-plus-penalty method (Stochastic optimization Convex Optimization (Non-linear)) 1993 $O(n^{2})$ $O(Vmn)$????
Gröbner Bases Buchberger's algorithm (Gröbner Bases Gröbner Bases) 1976 d^{({2}^{(n+o({1})})}) d^{({2}^{(n+o({1}))})}??
Gröbner Bases Faugère F4 algorithm (Gröbner Bases Gröbner Bases) 1999 $O(C(n+D_{reg}, D_{reg})$^{\omega}) where omega is the exponent on matrix multiplication $O(C(n+D_{reg}, D_{reg})$^{2})?
Gröbner Bases Faugère F5 algorithm (Gröbner Bases Gröbner Bases) 2002 $O(C(n+D_{reg}, D_{reg})$^{\omega}) where omega is the exponent on matrix multiplication $O(C(n+D_{reg}, D_{reg})$^{2})?
Minimum value in each row of an implicitly-defined totally monotone matrix Naive algorithm ( Minimum value in each row of an implicitly-defined totally monotone matrix) 1940 $O(mn)$ $O({1})$
Minimum value in each row of an implicitly-defined totally monotone matrix SMAWK algorithm ( Minimum value in each row of an implicitly-defined totally monotone matrix) 1987 $O(n({1}+\log(n/m)$)) $O(n)$?
All Permutations Steinhaus–Johnson–Trotter algorithm (All Permutations All Permutations) 1963 $O(n)$ on specific permutations $O({1})$
All Permutations Tompkins–Paige algorithm (All Permutations All Permutations) 1956 $O(n)$ on specific permutations $O(n)$
All Permutations Heap's algorithm (All Permutations All Permutations) 1963 $O(n)$ per permutation $O(n)$
Alphabetic Tree Problem Garsia–Wachs algorithm (Alphabetic Tree Problem Optimal Binary Search Trees) 1977 $O(n \log n)$ $O(n)$
Alphabetic Tree Problem Hu–Tucker algorithm (Alphabetic Tree Problem Optimal Binary Search Trees) 1971 $O(n \log n)$ $O(n)$
OBST Modified Knuth's DP algorithm (OBST Optimal Binary Search Trees) 1970 $O(n^{2})$ $O(n^{2})$
OBST Knuth's DP algorithm (OBST Optimal Binary Search Trees) 1970 $O(n^{3})$ $O(n^{2})$
OBST Naive algorithm (OBST Optimal Binary Search Trees) 1940 $O({4}^n /n \sqrt{n})$ $O({1})$
OBST Yao (OBST Optimal Binary Search Trees) 1982 $O(n^{2})$ $O(n^{2})$
Approximate OBST Levcopoulos; Lingas; Sack (Approximate OBST Optimal Binary Search Trees) 1989 $O(n)$ $O(n)$
Approximate OBST de Prisco (Approximate OBST Optimal Binary Search Trees) 1993 $O(n)$ $O(n)$
2-player Lemke–Howson algorithm (2-player Nash Equilibria) 1964 {2}^{($O(n+m)$)} (previously $O(n^{4})$????) $O(mn)$?
2-player Lipton; Mehta (2-player Nash Equilibria) 2003 $O(n^{(O(log n)$)} (previously $O(n^{2} logn)$????) (see sheet {2})
Bipartite Maximum-Weight Matching Hungarian algorithm (Bipartite Maximum-Weight Matching Maximum-Weight Matching) 1955 $O(n^{4})$ $O(n^{2})$
Maximum-Weight Matching Edmonds (Maximum-Weight Matching Maximum-Weight Matching) 1965 $O(mn^{2})$ $O(mn^{2})$??
Maximum-Weight Matching Micali; Vazirani ( Maximum-Weight Matching) 1980 $O(n^{3} \log n)$ -
Maximum-Weight Matching Mucha and Sankowski ( Maximum-Weight Matching) 2004 $O(n^{3})$ -
Constructing Eulerian Trails in a Graph Fleury's algorithm + Tarjan (Constructing Eulerian Trails in a Graph Constructing Eulerian Trails in a Graph) 1974 $O(E^{2})$ $O(E)$
Constructing Eulerian Trails in a Graph Hierholzer's algorithm (Constructing Eulerian Trails in a Graph Constructing Eulerian Trails in a Graph) 1873 $O(E)$ $O(E)$
Constructing Eulerian Trails in a Graph Fleury's algorithm + Thorup (Constructing Eulerian Trails in a Graph Constructing Eulerian Trails in a Graph) 2000 $O(E \log^{3}(E)$ \log\log E) $O(E)$
Discrete Fourier Transform Naive algorithm (Discrete Fourier Transform Discrete Fourier Transform) 1965 $O(n^{2})$ $O({1})$
Discrete Fourier Transform Cooley–Tukey algorithm (Discrete Fourier Transform Discrete Fourier Transform) 1965 $O(n \log n)$ $O(n)$?
Discrete Fourier Transform Rader–Brenner algorithm (Discrete Fourier Transform Discrete Fourier Transform) 1976 $O(n \log n)$ $O(n)$?
Discrete Fourier Transform Bruun's FFT algorithm (Discrete Fourier Transform Discrete Fourier Transform) 1978 $O(n \log n)$ $O(n)$?
Discrete Fourier Transform Yavne Split Radix FFT algorithm (Discrete Fourier Transform Discrete Fourier Transform) 1968 $O(n \log n)$ $O(n)$?
Discrete Fourier Transform Gentleman; Morven and Gordon Sande radix-4 algorithm (Discrete Fourier Transform Discrete Fourier Transform) 1966 $O(n \log n)$ $O(n)$?
Discrete Fourier Transform Bergland; Glenn radix-8 algorithm (Discrete Fourier Transform Discrete Fourier Transform) 1969 $O(n \log n)$ $O(n)$
Discrete Fourier Transform Extended Split Radix FFT algorithm (Discrete Fourier Transform Discrete Fourier Transform) 2001 $O(n \log n)$ $O(n)$?
Discrete Fourier Transform Von zur Gathen-Gerhard additive FFT (Discrete Fourier Transform Discrete Fourier Transform) 1996 $O(n (\log n)$^{2}) $O(n)$
Discrete Fourier Transform Wang-Zhu-Cantor additive FFT (Discrete Fourier Transform Discrete Fourier Transform) 1988 $O(n(\log n)$^{1.{58}5}) $O(n)$?
Discrete Fourier Transform Gao’s additive FFT (Discrete Fourier Transform Discrete Fourier Transform) 2010 $O(n logn loglogn)$ $O(n)$
Line Drawing Naive algorithm (Line Drawing Line Drawing) 1940 $O(n)$ $O({1})$
Line Drawing Digital Differential Analyzer (Line Drawing Line Drawing) 1940 $O(n)$ $O({1})$
Line Drawing Bresenham's line algorithm (Line Drawing Line Drawing) 1965 $O(n)$ $O({1})$
Line Drawing Xiaolin Wu's line algorithm (Line Drawing Line Drawing) 1991 $O(n)$ $O({1})$
Line Drawing Gupta-Sproull algorithm (Line Drawing Line Drawing) 1981 $O(n)$ $O({1})$
Polygon Clipping with Arbitrary Clipping Polygon Greiner–Hormann clipping algorithm (Polygon Clipping with Arbitrary Clipping Polygon Polygon Clipping) 1998 $O(n^{2})$ ? $O(n^{2})$?
Polygon Clipping with Convex Clipping Polygon Sutherland–Hodgman algorithm (Polygon Clipping with Convex Clipping Polygon Polygon Clipping) 1974 $O(n^{2})$ $O(n)$
Polygon Clipping with Arbitrary Clipping Polygon Vatti clipping algorithm (Polygon Clipping with Arbitrary Clipping Polygon Polygon Clipping) 1992 $O(n^{2})$ ? $O(n^{2})$?
Polygon Clipping with Arbitrary Clipping Polygon Weiler–Atherton clipping algorithm (Polygon Clipping with Arbitrary Clipping Polygon Polygon Clipping) 1977 $O(n^{2})$ $O(n^{2})$?
Eigenpair closest to mu; Any eigenpair; Any eigenvalue Inverse iteration (Eigenpair closest to mu; Any eigenpair; Any eigenvalue Eigenvalues (Iterative Methods)) 1921 $O(n^{2})$ $O(n^{2})$
Any eigenpair; Any eigenvalue Rayleigh quotient iteration (Any eigenpair; Any eigenvalue Eigenvalues (Iterative Methods)) 1940 $O(n^{2})$ $O(n^{2})$
Eigenpair closest to mu; Any eigenpair; Any eigenvalue LOBPCG algorithm (Eigenpair closest to mu; Any eigenpair; Any eigenvalue Eigenvalues (Iterative Methods)) 1948 $O(n^{2})$ $O(n)$?
Any eigenvalue Bisection method (Any eigenvalue Eigenvalues (Iterative Methods)) 1985 $O(n^{2})$ $O(n^{2})$?
Any eigenvalue Laguerre iteration (Any eigenvalue Eigenvalues (Iterative Methods)) 1940 $O(n^{2})$ $O(n^{2})$?
All eigenvalues; Any eigenvalue QR algorithm (All eigenvalues; Any eigenvalue Eigenvalues (Iterative Methods)) 1962 $O(n^{2})$ $O(n^{2})$
All eigenvalues; Any eigenvalue Jacobi eigenvalue algorithm (All eigenvalues; Any eigenvalue Eigenvalues (Iterative Methods)) 1846 $O(n^{2})$ $O(n^{2})$?
All eigenvalues; Any eigenvalue Divide-and-conquer (All eigenvalues; Any eigenvalue Eigenvalues (Iterative Methods)) 1986 $O(n \log n)$ $O(n^{2})$
All eigenpairs; Eigenpair closest to mu; Any eigenpair; Any eigenvalue; All eigenvalues Homotopy method (All eigenpairs; Eigenpair closest to mu; Any eigenpair; Any eigenvalue; All eigenvalues Eigenvalues (Iterative Methods)) 1992 $O(n^{2})$ $O(n^{2})$??
Eigenpair closest to mu; Any eigenpair; Any eigenvalue Folded spectrum method (Eigenpair closest to mu; Any eigenpair; Any eigenvalue Eigenvalues (Iterative Methods)) 1934 $O(n^{2})$ $O(n)$?
Any eigenpair; Any eigenvalue MRRR algorithm (Any eigenpair; Any eigenvalue Eigenvalues (Iterative Methods)) 1999 $O(n)$ $O(n^{2})$
General Root Computation Bisection method (General Root Computation Root Computation) 1820 $O(n_{max})$ $O({1})$
General Root Computation False position method (General Root Computation Root Computation) 1690 $O(n_{max})$ $O({1})$
Root Computation with continuous first derivative Newton's method (Root Computation with continuous first derivative Root Computation) 1940 $O(n_{max})$ $O({1})$
Root Computation with continuous second derivative Halley's method (Root Computation with continuous second derivative Root Computation) 1940 $O(n_{max})$ $O({1})$
General Root Computation Secant method (General Root Computation Root Computation) 1940 $O(n_{max})$ $O({1})$
General Root Computation Ridder's method (General Root Computation Root Computation) 1979 $O(n_{max})$ $O({1})$
General Root Computation Muller's method (General Root Computation Root Computation) 1956 $O(n_{max})$ $O({1})$
Coset Enumeration Todd–Coxeter algorithm (Coset Enumeration Coset Enumeration) 1936 $O({2}^n)$ $O(gkc)$
Coset Enumeration Haselgrove-Leech-Trotter (HLT) algorithm (Coset Enumeration Coset Enumeration) 1940 $O({2}^n)$ $O(ng)$?
Coset Enumeration Knuth–Bendix algorithm (Coset Enumeration Coset Enumeration) 1970 $O({1.5}^n n^{2} logn)$ $O(ng)$???
Maximum Likelihood Parameters Expectation–maximization (EM) algorithm ( Maximum Likelihood Parameters) 1977 $O(n^{3})$ $O(n+r)$?
Maximum Likelihood Parameters Newton–Raphson algorithm ( Maximum Likelihood Parameters) 1685 $O(n^{3})$ $O(n+r^{2})$?
Maximum Likelihood Parameters Parameter-expanded expectation maximization (PX-EM) algorithm ( Maximum Likelihood Parameters) 1998 $O(n^{3})$ $O(n+r)$?
Maximum Likelihood Parameters Expectation conditional maximization (ECM) ( Maximum Likelihood Parameters) 2017 $O(n^{2} \log n)$ $O(n+r)$?
Maximum Likelihood Parameters Generalized expectation maximization (GEM) algorithm ( Maximum Likelihood Parameters) 1994 $O(n^{4} \log^{0.1}(.{5}n)$) $O(n+r)$?
Maximum Likelihood Parameters α-EM algorithm ( Maximum Likelihood Parameters) 2003 $O(n^{3})$ $O(n+r)$?
Cardinality Estimation Naive solution ( Cardinality Estimation) 1940 $O(N)$ $O(n)$
Cardinality Estimation Flajolet–Martin algorithm ( Cardinality Estimation) 1984 $O(N)$ $O(log n)$
Cardinality Estimation LogLog algorithm ( Cardinality Estimation) 2003 $O(N)$ $O(log(log(n)$))
Cardinality Estimation HyperLogLog algorithm ( Cardinality Estimation) 2007 $O(N)$ $O(eps^{-2}*log(log(n)$))+log(n))
Cardinality Estimation HyperLogLog++ ( Cardinality Estimation) 2014 $O(N)$ $O(eps^{-2}*log(log(n)$))+log(n))
streaming Min/max sketches streaming algorithm (streaming Cardinality Estimation) 1980 $O(N)$ $O({1})$
streaming Bottom-m sketches streaming algorithm (streaming Cardinality Estimation) 1980 $O(N)$ $O(m)$
Global Register Allocation Chaitin's Algorithm (Global Register Allocation Register Allocation) 1981 $O(n^{2})$ $O(n^{2})$
Global Register Allocation Chow's Algorithm (Global Register Allocation Register Allocation) 1984 $O(n^{2})$ $O(n^{2})$
Global Register Allocation Linear Scan, Poletto & Sarkar (Global Register Allocation Register Allocation) 1999 $O(n)$ $O(r)$
Register Allocation Cooper and Dasgupta algorithm ( Register Allocation) 1983 $O(n^{2})$ -
Global Register Allocation Optimal Register Allocation (ORA), Goodwin & Wilken Algorithm (Global Register Allocation Register Allocation) 1996 $O(n^{3})$ Depends on the choice of {0}-{1} ILP solver
Global Register Allocation Kong and Wilken Algorithm (Global Register Allocation Register Allocation) 1998 $O(n^{3})$ ? Probably also dependent on the ILP solver
Voronoi Diagrams Fortune's algorithm (Voronoi Diagrams Voronoi Diagrams) 1986 $O(n \log n)$ $O(n)$
Voronoi Diagrams Linde–Buzo–Gray algorithm ( Voronoi Diagrams) 1980 $O(n \log n)$ -
Voronoi Diagrams Bowyer–Watson algorithm (Voronoi Diagrams Voronoi Diagrams) 1981 $O(n \log n)$ $O(n)$
Variance Calculations Naïve algorithm ( Variance Calculations) 1940 $O(n)$ $O({1})$
Variance Calculations Two-pass algorithm ( Variance Calculations) 1940 $O(n)$ $O({1})$
Variance Calculations Welford's Online algorithm ( Variance Calculations) 1962 $O(n)$ $O({1})$
Variance Calculations Weighted incremental algorithm ( Variance Calculations) 1979 $O(n)$ $O({1})$
Variance Calculations Chan's algorithm Parallel Implementation ( Variance Calculations) 1979 $O(\log n)$ $O({1})$ per processor
Topological Sorting Kahn's algorithm (Topological Sorting Topological Sorting) 1962 $O(V+E)$ $O(V)$
Topological Sorting Tarjan's DFS based algorithm (Topological Sorting Topological Sorting) 1976 $O(V+E)$ $O(V)$?
Topological Sorting Dekel; Nassimi & Sahni Parallel Implementation (Topological Sorting Topological Sorting) 1981 $O(\log^{2} V)$ $O(V^{2})$??
DFA Minimization Hopcroft's algorithm (DFA Minimization DFA Minimization) 1971 $O(kn \log n)$ $O(kn)$
DFA Minimization Moore's algorithm (DFA Minimization DFA Minimization) 1956 $O(n^{2} k)$ $O(n)$
DFA Minimization Brzozowski's algorithm (DFA Minimization DFA Minimization) 1963 $O({2}^n)$ $O({2}^n)$
Acyclic DFA Minimization Revuz's algorithm (Acyclic DFA Minimization DFA Minimization) 1992 $O(n)$ $O(n)$
Cyclic Nontrivial SCCs DFA Minimization Almeida & Zeitoun (Cyclic Nontrivial SCCs DFA Minimization DFA Minimization) 2008 $O(n)$ $O(n)$
Off-Line Lowest Common Ancestor Tarjan's off-line lowest common ancestors algorithm (Off-Line Lowest Common Ancestor Lowest Common Ancestor) 1984 $O(n+m)$ $O(n)$
Lowest Common Ancestor with Static Trees Schieber; Vishkin (Lowest Common Ancestor with Static Trees Lowest Common Ancestor) 1988 $O(n+m)$ $O(n)$
Lowest Common Ancestor with Static Trees Berkman; Vishkin (Lowest Common Ancestor with Static Trees Lowest Common Ancestor) 1993 $O(n+m)$ ? $O(n)$
Lowest Common Ancestor with Static Trees [[Bender; Colton (LCA <=> RMQ) (Lowest Common Ancestor with Static Trees Lowest Common Ancestor)]] 2000 $O(n+m)$ $O(n)$
Lowest Common Ancestor with Static Trees Stephen Alstrup, Cyril Gavoille, Haim Kaplan & Theis Rauhe (Lowest Common Ancestor with Static Trees Lowest Common Ancestor) 2004 $O(n+m)$ $O(n)$
Exact GED X Chen (Exact GED Graph Edit Distance Computation) 2019 $O(VS)$ $O(wV^{2})$
Inexact GED Y Bai (Inexact GED Graph Edit Distance Computation) 2018 $O(V^{2})$ $O(V^{2})$
Inexact GED L Chang (Inexact GED Graph Edit Distance Computation) 2017 $O(V E^{2} logV)$ $O(V)$
Inexact GED K Riesen (Inexact GED Graph Edit Distance Computation) 2013 $O(V^{2})$ $O(V)$
Graph Edit Distance Computation Alberto Sanfeliu and King-Sun Fu ( Graph Edit Distance Computation) 1983 $O(V^{3} E^{2})$ -
Inexact GED Neuhaus, Riesen, Bunke (Inexact GED Graph Edit Distance Computation) 2006 $O(V^{2})$ $O(wV)$
Graph Edit Distance Computation Wang Y-K; Fan K-C; Horng J-T ( Graph Edit Distance Computation) 1997 $O(V E^{2} \log \log E)$ -
Graph Edit Distance Computation Tao D; Tang X; Li X et al ( Graph Edit Distance Computation) 2006 $O(V^{2})$ -
Inexact GED Finch (Inexact GED Graph Edit Distance Computation) 1998 $O(V^{2} E)$ $O(V^{2})$?
Enumerating Maximal Cliques, arbitrary graph Bron–Kerbosch algorithm (Enumerating Maximal Cliques, arbitrary graph Clique Problems) 1973 $O({3}^{(n/{3})})$ $O(n^{2})$?
Enumerating Maximal Cliques, arbitrary graph Akkoyunlu; E. A. (Enumerating Maximal Cliques, arbitrary graph Clique Problems) 1973 $O({3}^{(n/{3})$}) $O(n^{2})$?
Enumerating Maximal Cliques, arbitrary graph Tomita; Tanaka & Takahashi (Enumerating Maximal Cliques, arbitrary graph Clique Problems) 2006 $O({3}^{(n/{3})$}) $O(n^{2})$?
Enumerating Maximal Cliques, arbitrary graph Segundo; Artieda; Strash Parallel (Enumerating Maximal Cliques, arbitrary graph Clique Problems) 2011 $O({3}^{(n/{3})})$ total work? (previously this cell said $O(n^{4})$) $O(n^{2})$ auxiliary??
Enumerating Maximal Cliques, arbitrary graph David Eppstein, Maarten Löffler, Darren Strash (Enumerating Maximal Cliques, arbitrary graph Clique Problems) 2010 $O(dn {3}^{(d/{3})})$ $O(n^{2})$?
Enumerating Maximal Cliques, arbitrary graph Chiba and Nishizeki (Enumerating Maximal Cliques, arbitrary graph Clique Problems) 1985 $O(a(G)*m)$ per clique $O(m)$
Enumerating Maximal Cliques, arbitrary graph M. Chrobak and D. Eppstein (Enumerating Maximal Cliques, arbitrary graph Clique Problems) 1989 $O(n d^{2} {2}^d)$ $O(n)$?
Enumerating Maximal Cliques, arbitrary graph Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa (Enumerating Maximal Cliques, arbitrary graph Clique Problems) 1977 $O(nm)$ per clique $O(m)$
Enumerating Maximal Cliques, arbitrary graph Kazuhisa Makino, Takeaki Uno; Section 5 (Enumerating Maximal Cliques, arbitrary graph Clique Problems) 2004 $O(n^{\omega})$ per clique where omega is the exponent on matrix multiplication $O(n^{2})$
Minimum TSP Held–Karp algorithm (Minimum TSP The Traveling-Salesman Problem) 1962 $O(V^{2} {2}^V)$ $O(V*{2}^V)$
Approximate TSP Christofides algorithm (Approximate TSP The Traveling-Salesman Problem) 1976 $O(V^{3})$ $O(V^{2})$???
Minimum TSP Lawler; E. L. (Minimum TSP The Traveling-Salesman Problem) 1985 $O({1.674}^V E^{2})$ -
Minimum TSP TSPLIB (Minimum TSP The Traveling-Salesman Problem) 1991 $O({2}^V \log E)$ -
2-Dimensional Poisson Problem 5-point star Cramer's rule (2-Dimensional Poisson Problem Poisson Problem) 1945 $O({4}^{(n^{2})})$ $O({4}^{(n^{2})})$ for sure, $O(n^{2})$ possibly??? (if super conservative)
2-Dimensional Poisson Problem 5-point Gauss elimination (2-Dimensional Poisson Problem Poisson Problem) 1945 $O(n^{4})$ $O(n^{4})$
2-Dimensional Poisson Problem 5-point Gauss Seidel iteration (2-Dimensional Poisson Problem Poisson Problem) 1945 $O(n^{4} \log n)$ $O(n^{2})$?
2-Dimensional Poisson Problem 5-point SOR iteration (2-Dimensional Poisson Problem Poisson Problem) 1954 $O(n^{3} \log n)$ $O(n^{2})$?
2-Dimensional Poisson Problem 5-point ADI iteration (2-Dimensional Poisson Problem Poisson Problem) 1955 $O(n^{2} \log^{2} n)$ $O(n^{2})$?
2-Dimensional Poisson Problem 9-point SOR iteration (2-Dimensional Poisson Problem Poisson Problem) 1956 $O(n^{3})$ $O(n^{2})$?
2-Dimensional Poisson Problem 9-point Tensor product (2-Dimensional Poisson Problem Poisson Problem) 1964 $O(n^{3})$ $O(n^{2})$?
2-Dimensional Poisson Problem 9-point ADI iteration (2-Dimensional Poisson Problem Poisson Problem) 1965 $O(n^{2} \log n)$ $O(n^{2})$?
2-Dimensional Poisson Problem 5-point FFT (2-Dimensional Poisson Problem Poisson Problem) 1965 $O(n^{2} \log n)$ $O(n^{2})$?
2-Dimensional Poisson Problem 9-point ADI iteration + smooth guess (2-Dimensional Poisson Problem Poisson Problem) 1969 $O(n^{2} \log n)$ $O(n^{2})$?
2-Dimensional Poisson Problem 5-point cyclic reduction (2-Dimensional Poisson Problem Poisson Problem) 1970 $O(n^{2} \log n)$ $O(n^{2})$?
2-Dimensional Poisson Problem 9-point FFT (2-Dimensional Poisson Problem Poisson Problem) 1978 $O(n^{2} \log n)$ $O(n^{2})$?
3-Dimensional Poisson Problem 5-point star Cramer's rule (3-Dimensional Poisson Problem Poisson Problem) 1945 $O({5}^{(n^{3})$}) $O({5}^{(n^{3})})$ for sure, $O(n^{3})$ possibly??? (if super conservative)
3-Dimensional Poisson Problem 5-point Gauss elimination (3-Dimensional Poisson Problem Poisson Problem) 1945 $O(n^{7})$ $O(n^{6})$
3-Dimensional Poisson Problem 5-point Gauss Seidel iteration (3-Dimensional Poisson Problem Poisson Problem) 1945 $O(n^{5} \log n)$ $O(n^{3})$?
3-Dimensional Poisson Problem 5-point SOR iteration (3-Dimensional Poisson Problem Poisson Problem) 1954 $O(n^{4} \log n)$ $O(n^{3})$?
3-Dimensional Poisson Problem 5-point ADI iteration (3-Dimensional Poisson Problem Poisson Problem) 1955 $O(n^{3} \log^{2} n)$ $O(n^{3})$?
3-Dimensional Poisson Problem 9-point SOR iteration (3-Dimensional Poisson Problem Poisson Problem) 1956 $O(n^{4})$ $O(n^{3})$?
3-Dimensional Poisson Problem 9-point Tensor product (3-Dimensional Poisson Problem Poisson Problem) 1964 $O(n^{4})$ $O(n^{3})$?
3-Dimensional Poisson Problem 9-point ADI iteration (3-Dimensional Poisson Problem Poisson Problem) 1965 $O(n^{3} \log n)$ $O(n^{3})$?
3-Dimensional Poisson Problem 5-point FFT (3-Dimensional Poisson Problem Poisson Problem) 1965 $O(n^{3} \log n)$ $O(n^{3})$?
3-Dimensional Poisson Problem 9-point ADI iteration + smooth guess (3-Dimensional Poisson Problem Poisson Problem) 1969 $O(n^{3} \log n)$ $O(n^{3})$?
3-Dimensional Poisson Problem 5-point cyclic reduction (3-Dimensional Poisson Problem Poisson Problem) 1970 $O(n^{3} \log n)$ $O(n^{3})$?
3-Dimensional Poisson Problem 9-point FFT (3-Dimensional Poisson Problem Poisson Problem) 1978 $O(n^{3} \log n)$ $O(n^{3})$?
2-Dimensional Delaunay Triangulation Naive algorithm (2-Dimensional Delaunay Triangulation Delaunay Triangulation) 1934 $O(n^{4})$? (previously $O(n^{2})$) $O(n)$
2-Dimensional Delaunay Triangulation Flipping algorithm (2-Dimensional Delaunay Triangulation Delaunay Triangulation) 1999 $O(n^{2})$ $O(n)$
2-Dimensional Delaunay Triangulation de Berg; Cheong (2-Dimensional Delaunay Triangulation Delaunay Triangulation) 2008 $O(n \log n)$ $O(n)$
2-Dimensional Delaunay Triangulation Bowyer–Watson algorithm (2-Dimensional Delaunay Triangulation Delaunay Triangulation) 1981 $O(n \log n)$ $O(n)$
2-Dimensional Delaunay Triangulation Belloch (2-Dimensional Delaunay Triangulation Delaunay Triangulation) 2006 $O(n \log n)$ $O(n)$
2-Dimensional Delaunay Triangulation Guibas; Stofli (2-Dimensional Delaunay Triangulation Delaunay Triangulation) 1985 $O(n \log n)$ $O(n)$
2-Dimensional Delaunay Triangulation Fortune (2-Dimensional Delaunay Triangulation Delaunay Triangulation) 1992 $O(n^{2})$ $O(n)$
2-Dimensional Delaunay Triangulation S-hull (Sinclair) (2-Dimensional Delaunay Triangulation Delaunay Triangulation) 2010 $O(n \log n)$ $O(n)$
2-Dimensional Delaunay Triangulation Dwyer (2-Dimensional Delaunay Triangulation Delaunay Triangulation) 1987 $O(n \log n)$ $O(n)$?
Delaunay Triangulation Katajainen and M. Koppinen ( Delaunay Triangulation) 1988 $O(n \log n)$ -
2-Dimensional Delaunay Triangulation Drysdale; Su (2-Dimensional Delaunay Triangulation Delaunay Triangulation) 1996 $O(n)$ $O(n)$?
General Delaunay Triangulation (d-dimensions) Dwyer (higher dimensions) (General Delaunay Triangulation (d-dimensions) Delaunay Triangulation) 1987 $O(n \log \log n)$ $O(n)$?
De Novo Genome Assembly de Bruijn Graph (Idury, Waterman) (De Novo Genome Assembly De Novo Genome Assembly) 1994 $O(n^{2})$ $O(n)$?
De Novo Genome Assembly String Graph (Myers) (De Novo Genome Assembly De Novo Genome Assembly) 1994 $O(n \log n)$ $O(n)$?
De Novo Genome Assembly String Graph with Ferragina–Manzini Index (Simpson, Durbin) (De Novo Genome Assembly De Novo Genome Assembly) 2010 $O(n)$ $O(n)$?
De Novo Genome Assembly Hybrid Algorithm (De Novo Genome Assembly De Novo Genome Assembly) 1999 $O(n^{2})$ -
Subset Sum Naive algorithm (Subset Sum The Subset-Sum Problem) 1940 $O({2}^n * n)$ $O(n)$
Subset Sum Random Split Exponential algorithm (Subset Sum The Subset-Sum Problem) 1940 $O({2}^{(n/{2})} * n)$ $O({2}^{(n/{2})})$
Functional Dependency Inference Problem Brute force algorithm (Functional Dependency Inference Problem Dependency Inference Problem) 1967 $O(n^{2} {2}^n p \log p)$ $O(n2^n)$?
Functional Dependency Inference Problem Schlimmer (Functional Dependency Inference Problem Dependency Inference Problem) 1993 $O(n {2}^n p)$ $O({2}^n)$
Decisional BCNF Liu (Decisional BCNF BCNF Decomposition) 1992 $O(kn^{2})$ $O(n)$
4NF Decomposition Tradu; Mirc ( 4NF Decomposition) 1967 $O({2}^n)$ -
4NF Decomposition Xu; Renio ( 4NF Decomposition) 1972 $O({2}^n)$ -
4NF Decomposition Derek's Algorithm ( 4NF Decomposition) 1983 $O({2}^n)$ -
4NF Decomposition Russell et. al. ( 4NF Decomposition) 1989 $O({2}^n)$ -
4NF Decomposition Maxwell ( 4NF Decomposition) 2000 $O({2}^n)$ -
4NF Decomposition Derek's + Maxwell ( 4NF Decomposition) 2001 $O({2}^n)$ -
4NF Decomposition Naive ( 4NF Decomposition) 1956 $O({2}^n)$ -
4NF Decomposition Trino ( 4NF Decomposition) 2004 $O({2}^n)$ -
Multivalued Dependency Inference Problem Räihä; Manilla (Multivalued Dependency Inference Problem Dependency Inference Problem) 1992 $O(n^{2} {2}^n p log p)$ $O(n2^n)$?
Multivalued Dependency Inference Problem Catriel Beeri Ronald Fagin John H. Howard (Multivalued Dependency Inference Problem Dependency Inference Problem) 1977 $O({4}^n)$ -
Disk Scheduling FCFS (Disk Scheduling Disk Scheduling) 1979 $O(n)$ $O({1})$
Disk Scheduling SSTF (Disk Scheduling Disk Scheduling) 1979 $O(n \log n)$ with binary tree $O(n)$
Disk Scheduling SCAN (Disk Scheduling Disk Scheduling) 1979 $O(n \log n)$ $O(n)$
Disk Scheduling LOOK (Disk Scheduling Disk Scheduling) 1979 $O(n \log n)$ $O(n)$
Disk Scheduling C-SCAN (Disk Scheduling Disk Scheduling) 1979 $O(n \log n)$ $O(n)$
Disk Scheduling C-LOOK (Disk Scheduling Disk Scheduling) 1979 $O(n \log n)$ $O(n)$
The Vertex Cover Problem Brute force (backtracking search) (The Vertex Cover Problem The Vertex Cover Problem) 1940 $O({2}^k n^O({1})$) $O(k)$
The Vertex Cover Problem Sam Buss (The Vertex Cover Problem The Vertex Cover Problem) 1993 $O(kn + {2}^k k^{({2}k + {2})})$ $O(k^{2})$?
The Vertex Cover Problem Chen; I. Kanj; and W. Jia. (The Vertex Cover Problem The Vertex Cover Problem) 2001 $O(kn + {1.2852}^k)$ $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??)
The Vertex Cover Problem Chandran and F. Grandoni (The Vertex Cover Problem The Vertex Cover Problem) 2004 $O(min({1.2759}^k k^{1.5}, {1.2745}^k k^{4}) + kn)$ $O(min({1.2759}^k k^{1.5}, {1.2745}^k k^{4}) + kn)$ but exponential
The Vertex Cover Problem Chen; I. Kanj; and W. Jia. (The Vertex Cover Problem The Vertex Cover Problem) 2006 $O({1.2738}^k+ kn)$ $O(poly(n))$
The Vertex Cover Problem, Degrees Bounded By 3 J. Chen; L. Liu; and W. Jia. (The Vertex Cover Problem, Degrees Bounded By 3 The Vertex Cover Problem) 2000 $O(k*{1.2192}^k)$ $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??)
The Vertex Cover Problem Balasubramanian; Fellows (The Vertex Cover Problem The Vertex Cover Problem) 1996 $O(kn + ({1.324718})$^k * k^{2}) $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??)
The Vertex Cover Problem Papadimitriou and M Yannakakis (The Vertex Cover Problem The Vertex Cover Problem) 1996 $O({3}^k n)$ $O(k)$ auxiliary?
The Vertex Cover Problem Niedermeier, Rossmanith (The Vertex Cover Problem The Vertex Cover Problem) 1999 $O(kn + {1.29175}^k k^{2})$. $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??)
The Vertex Cover Problem Downey (The Vertex Cover Problem The Vertex Cover Problem) 1998 $O(kn + {1.31951}^k k^{2})$ $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??)
CFG Recognition Cocke–Younger–Kasami algorithm (CFG Recognition CFG Problems) 1968 G|)$ $O(n^{2})$
CFG Recognition Valiant (CFG Recognition CFG Problems) 1975 G|)$ where omega is the exponent for matrix multiplication $O(n^{2})$?
CFG Parsing Earley parser (CFG Parsing CFG Problems) 1968 $O(n^{3})$ $O(n^{2})$
CFG Parsing GLR parser (CFG Parsing CFG Problems) 1974 $O(n^{3})$ $O(n^{3})$
Finding Frequent Itemsets A-Priori algorithm (Finding Frequent Itemsets Finding Frequent Itemsets) 1994 $O(n^{2})$ $O(n^{2})$
Finding Frequent Itemsets The Algorithm of Park; Chen; and Yu (PCY) (Finding Frequent Itemsets Finding Frequent Itemsets) 1995 $O(n^{2})$ $O(n^{2})$
Finding Frequent Itemsets The Multistage Algorithm (Finding Frequent Itemsets Finding Frequent Itemsets) 1999 $O(n^{2})$ $O(n^{2})$
Finding Frequent Itemsets The Multihash Algorithm (Finding Frequent Itemsets Finding Frequent Itemsets) 1999 $O(n^{2})$ $O(n^{2})$
Lossy Compression Gupta; Verdu (Lossy Compression Data Compression) 2009 $O(n^{2} log^{3} n)$ $O(n)$
Lossy Compression Discrete Cosine Transform (Lossy Compression Data Compression) 1974 $O(n^{2})$ $O(n)$
Lossy Compression Maneva and M. J. Wainwright (Lossy Compression Data Compression) 2005 $O(n^{2})$ $O(n^{2})$
Lossy Compression Ciliberti; Mézard (Lossy Compression Data Compression) 2005 $O(n^{2})$ $O(n^{2})$?
Lossy Compression Brute force (Lossy Compression Data Compression) 1940 $O(n*{2}^n)$ $O(n*{2}^n)$?
Lossy Compression Matsunaga; Yamamoto (Lossy Compression Data Compression) 2003 $O(n*{2}^n)$ exp(n)
Lossy Compression Sun; M. Shao; J. Chen; K. Wong; and X. Wu (Lossy Compression Data Compression) 2010 $O(kmn)$? $O(kmn)$?
Lossy Compression Miyake 2006 (Lossy Compression Data Compression) 2006 $O(n*{2}^n)$ $O({2}^n)$
Lossy Compression Martinian and M. J. Wainwright (Lossy Compression Data Compression) 2006 $O(n*{2}^n)$ $O(mn+mk)$?
Lossy Compression Jalali and T. Weissman (Lossy Compression Data Compression) 2008 $O(n)$ $O(n)$?
Lossy Compression Jalali; A. Montanari; and T. Weissman (Lossy Compression Data Compression) 2010 $O(n)$ $O(n)$?
Lossy Compression Korada and R. Urbanke; (Lossy Compression Data Compression) 2010 $O(n*{2}^n)$ $O(N)$
Distinct-degree; Equal-degree Berlekamp's algorithm (Distinct-degree; Equal-degree Factorization of Polynomials Over Finite Fields) 1967 $O(n^{3} \log n)$ $O(n)$
Factorization of Polynomials Over Finite Fields Schubert's algorithm ( Factorization of Polynomials Over Finite Fields) 1940 $O(n^{3})$ $O(n)$
Square-free Square-free factorization (Square-free Factorization of Polynomials Over Finite Fields) 1975 $O(n^{3})$ $O(n)$
Distinct-degree Distinct-degree factorization (Distinct-degree Factorization of Polynomials Over Finite Fields) 1944 $O(n^{3} + n \log n)$ $O(n)$
Equal-degree Cantor–Zassenhaus algorithm (Equal-degree Factorization of Polynomials Over Finite Fields) 1981 $O(n^{3} \log n)$ $O(n)$
Equal-degree Victor Shoup's algorithm (Equal-degree Factorization of Polynomials Over Finite Fields) 1990 $O(n^{2})$ $O(n)$
Cryptanalysis of Linear Feedback Shift Registers Berlekamp–Massey algorithm (Cryptanalysis of Linear Feedback Shift Registers Cryptanalysis of Linear Feedback Shift Registers) 1969 $O(n^{2})$ $O(n)$?
Stable Marriage Problem Gale–Shapley algorithm (Stable Marriage Problem Stable Matching Problem) 1962 $O(n^{2})$ $O(n)$
Stable Roommates Problem Irving's Algorithm (Stable Roommates Problem Stable Matching Problem) 1985 $O(n^{2})$ $O(n^{2})$?
Stable Marriage Problem Manlove; Malley (Stable Marriage Problem Stable Matching Problem) 2005 $O(n^{2})$ $O(n^{2})$?
Stable Marriage Problem Unsworth; C.; Prosser; P (Stable Marriage Problem Stable Matching Problem) 2005 $O(n^{2})$ $O(n^{2})$?
Arc Consistency? Hentenryck et. al. (Arc Consistency? Stable Matching Problem) 1992 $O(n^{3})$ $O(n^{3})$?
Stable Marriage Problem Gent; I.P.; Irving; R.W.; Manlove; D.F.; Prosser; P.; Smith; B.M. (Stable Marriage Problem Stable Matching Problem) 2001 $O(n^{2})$ $O(n^{2})$?
Stable Roommates Problem Patrick Posser (Stable Roommates Problem Stable Matching Problem) 2014 $O(n^{3})$ $O(n)$
Stable Marriage Problem S. S. TSENG and R. C. T. LEE (Stable Marriage Problem Stable Matching Problem) 1984 $O(n^{2})$ $O(n)$ per processor?
Stable Marriage Problem [[Tomas Feder, Nimrod Megiddoy, Serge A� Plotki (Stable Marriage Problem Stable Matching Problem)]] 1994 $O(n^{0.5})$ $O(n^{0.5})$ auxiliary per processor?
Longest Path on Interval Graphs Ioannidou; Kyriaki; Mertzios; George B.; Nikolopoulos; Stavros D. (Longest Path on Interval Graphs Longest Path Problem) 2011 $O(n^{4})$ $O(n^{3})$
Constructing Suffix Trees Naive (Constructing Suffix Trees Constructing Suffix Trees) 1973 $O(n^{2})$ $O(n)$
Constructing Suffix Trees Weiner's algorithm (Constructing Suffix Trees Constructing Suffix Trees) 1973 $O(n)$ $O(n)$
Constructing Suffix Trees Pratt (Constructing Suffix Trees Constructing Suffix Trees) 1973 $O(n)$ -
Constructing Suffix Trees Ukkonen (Constructing Suffix Trees Constructing Suffix Trees) 1995 $O(n)$ $O(n)$
Constructing Suffix Trees Ukkonen and D. Wood (Constructing Suffix Trees Constructing Suffix Trees) 1993 $O(n^{2})$ $O(n^{2})$
Constructing Suffix Trees Hariharan (Constructing Suffix Trees Constructing Suffix Trees) 1997 $O(log^{4}(n)$) $O(n)$
Constructing Suffix Trees Süleyman Cenk Sahinalp ; Uzi Vishkin (Constructing Suffix Trees Constructing Suffix Trees) 1994 $O(log^{2}(n)$) $O(n^{({1}+\eps)})$ for any fixed eps>{0}
Constructing Suffix Trees Farach (Constructing Suffix Trees Constructing Suffix Trees) 1997 $O(\log n)$ $O(n)$
Constructing Suffix Trees Rytter (Constructing Suffix Trees Constructing Suffix Trees) 2004 $O(\log n)$ $O(n)$
Constructing Suffix Trees McCreight (Constructing Suffix Trees Constructing Suffix Trees) 1976 $O(n)$ $O(n)$
Entity Resolution Fellegi & Sunter Model (Entity Resolution Entity Resolution) 1969 $O(n^{3}k)$ $O(k)$
Entity Resolution Gupta & Sarawagi CRF (Entity Resolution Entity Resolution) 2009 $O(n^{3}k)$ $O(nk)$?
Entity Resolution Chen Ensembles of classifiers (Entity Resolution Entity Resolution) 1989 $O(n^{2} \log n)$ -
Entity Resolution EM Based Winkler (Entity Resolution Entity Resolution) 2000 $O(n^{3}k)$ $O(k)$
Entity Resolution Ravikumar & Cohen Generative Models (Entity Resolution Entity Resolution) 2004 $O(n^{2} k)$ $O(k)$
Entity Resolution Bellare Active Learning (Entity Resolution Entity Resolution) 2012 $O(n^{2} \log n c \log c)$ -
Entity Resolution Ananthakrishna (Entity Resolution Entity Resolution) 2002 $O(n^{2} k)$ $O(n)$
Entity Resolution BOYS algorithm (Entity Resolution Entity Resolution) 1993 $O(n^{2} k)$ $O(n^{2})$
Longest Palindromic Substring Naive (Longest Palindromic Substring Longest Palindromic Substring) 1940 $O(n^{3})$ $O({1})$
Longest Palindromic Substring Dynamic Programming (Longest Palindromic Substring Longest Palindromic Substring) 1953 $O(n^{2})$ $O(n^{2})$
Longest Palindromic Substring Manacher (Longest Palindromic Substring Longest Palindromic Substring) 1975 $O(n)$ $O(n)$
Longest Palindromic Substring Jeuring (Longest Palindromic Substring Longest Palindromic Substring) 1994 $O(n)$ $O(n)$?
Longest Palindromic Substring Gusfield (Longest Palindromic Substring Longest Palindromic Substring) 1997 $O(n)$ $O(n)$
Global Register Allocation Demand-Driven Register Allocation (Global Register Allocation Register Allocation) 1996 $O(n^{2})$ $O(n^{2})$
Arithmetic Expression Binary Tree Sethi–Ullman Algorithm (Arithmetic Expression Binary Tree AST to Code Translation) 1970 $O(n)$ $O({1})$
Graph Isomorphism, General Graphs Babai and Luks (Graph Isomorphism, General Graphs Graph Isomorphism Problem) 1983 \exp(n^{\frac{1}{2} + o({1})}) -
Graph Isomorphism, Bounded Number of Vertices of Each Color Babai (Graph Isomorphism, Bounded Number of Vertices of Each Color Graph Isomorphism Problem) 1980 o(\exp({2}n^{1/2}\log^{2}n)) $O(n^{2})$
Isomorphism of strongly regular graphs Spielman (Isomorphism of strongly regular graphs Graph Isomorphism Problem) 1996 $n^{O(n^{({1}/{3})} log n)}$ check
Graph Isomorphism Problem McKay ( Graph Isomorphism Problem) 1981 $O((m1 + m2)n^{3} + m2 n^{2} L)$ ${2}mn+{10}n+m+(m+{4})K+{2}mL$
Graph Isomorphism Problem Schmidt & Druffel ( Graph Isomorphism Problem) 1976 $O(n*n!)$ $O(n^{2})$
Subgraph Isomorphism Ullman (Subgraph Isomorphism Graph Isomorphism Problem) 1976 - $O(mn)$?
Graph Isomorphism Problem Babai ( Graph Isomorphism Problem) 2017 {2}^{$O(\log n)$^3} -
Circulant graphs Muzychuk (Circulant graphs Graph Isomorphism Problem) 2004 $O(n^{2})$ $O(n^{2})$
Partial k-trees Bodlaender (Partial k-trees Graph Isomorphism Problem) 1990 $O(n^{(k+{4.5})})$ check
Hypergraphs isomorphism Babai & Codenotti (Hypergraphs isomorphism Graph Isomorphism Problem) 2008 $exp(O(k^{2} \sqrt{n})$ check
Digraph Realization Problem Kleitman–Wang Algorithm (Digraph Realization Problem Graph Realization Problems) 1973 $O(n)$ $O(n)$
Digraph Realization Problem Fulkerson–Chen–Anstee (Digraph Realization Problem Graph Realization Problems) 1982 $O(n)$ $O({1})$
DAG Realization Problem Berger & Müller-Hannemann (DAG Realization Problem Graph Realization Problems) 2011 $O(\exp(n)$) ?
Duplicate Elimination Sorting based (Merge Sort) (Duplicate Elimination Duplicate Elimination) 1964 $O(n \log n)$ $O(n)$
Duplicate Elimination Sorting based (Merge Sort) + real-time elimination (Duplicate Elimination Duplicate Elimination) 1964 $O(n \log n)$ -
Duplicate Elimination BST Algorithm (Duplicate Elimination Duplicate Elimination) 1999 $O(n \log n)$ $O(\log n)$
Duplicate Elimination Priority Queue Algorithm (Duplicate Elimination Duplicate Elimination) 1976 $O(n^{2})$ $O(n)$
Duplicate Elimination Sorted Neighborhood Algorithm (SNA) (Duplicate Elimination Duplicate Elimination) 1998 $O(n^{2})$ $O(n)$
Duplicate Elimination Duplicate Elimination Sorted Neighborhood Algorithm (DE-SNA) (Duplicate Elimination Duplicate Elimination) 2002 $O(n \log n)$ -
Duplicate Elimination Adaptive Duplicate Detection Algorithm (ADD) (Duplicate Elimination Duplicate Elimination) 2003 $O(n^{3})$ $O({1})$
Hyperbolic Spline Interpolation B.I. Kvasov (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation) 2008 $O(n^{3} \log^{2}K)$ $O(n)$?
Hyperbolic Spline Interpolation V. A. Lyul’ka and A. V. Romanenko (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation) 1994 $O(n^{5})$ -
Hyperbolic Spline Interpolation V. A. Lyul’ka and I. E. Mikhailov (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation) 2003 $O(n^{4})$ -
Hyperbolic Spline Interpolation V. I. Paasonen (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation) 1968 $O(n^{5} \log K)$ -
Hyperbolic Spline Interpolation P. Costantini, B. I. Kvasov, and C. Manni (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation) 1999 $O(n^{5} \log K)$ $O(n)$?
Hyperbolic Spline Interpolation B. I. Kvasov (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation) 2000 $O(n^{4})$ $O(n)$??
Mesh Parameterization ECK M.; DEROSE T.; DUCHAMP T.; 1995 (Mesh Parameterization Mesh Parameterization) 1995 $O(n^{2})$ -
Mesh Parameterization FLOATER 1997 (Mesh Parameterization Mesh Parameterization) 1997 $O(n^{2})$ -
Mesh Parameterization PINKALL U.; POLTHIER K 1993 (Mesh Parameterization Mesh Parameterization) 1993 $O(n^{2})$ -
Mesh Parameterization FLOATER 2003 (Mesh Parameterization Mesh Parameterization) 2003 $O(n^{2})$ -
Mesh Parameterization LEE Y.; KIM H. S.; LEE S 2002 (Mesh Parameterization Mesh Parameterization) 2002 $O(n \log^{3}n)$ -
Mesh Parameterization DESBRUN M.; MEYER M.; ALLIEZ P. 2002 (Mesh Parameterization Mesh Parameterization) 2002 $O(n^{2})$ -
Mesh Parameterization LÉVY B.; PETITJEAN S.; RAY N.; MAILLOT J 2002 (Mesh Parameterization Mesh Parameterization) 2002 $O(n \log^{2.5} n)$ -
Mesh Parameterization KARNI Z.; GOTSMAN C.; GORTLER S. J. 2005 (Mesh Parameterization Mesh Parameterization) 2005 $O(n^{2})$ -
Mesh Parameterization HORMANN K.; GREINER G 1999 (Mesh Parameterization Mesh Parameterization) 1999 $O(n^{2})$ -
Mesh Parameterization SHEFFER A.; DE STURLER E. 2000 (Mesh Parameterization Mesh Parameterization) 2000 $O(n^{2})$ -
Mesh Parameterization SHEFFER A.; LÉVY B.; MOGILNITSKY M.; BOGOMYAKOV A. 2005 (Mesh Parameterization Mesh Parameterization) 2005 $O(n^{2})$ -
Mesh Parameterization ZAYER R.; LÉVY B.; SEIDEL H.-P. 2007 (Mesh Parameterization Mesh Parameterization) 2007 $O(n)$ -
Mesh Parameterization SANDER P. V.; SNYDER J.; GORTER S. J.; HOPPE 2001 (Mesh Parameterization Mesh Parameterization) 2001 $O(n^{2})$ -
Mesh Parameterization YAN J. Q.; YANG X.; SHI P. F 2006 (Mesh Parameterization Mesh Parameterization) 2006 $O(n^{2})$ -
Mesh Parameterization ZAYER R.; ROESSL C.; SEIDEL H.-P 2005 (Mesh Parameterization Mesh Parameterization) 2005 $O(n \log n)$ -
Mesh Parameterization YOSHIZAWA S.; BELYAEV A. G.; SEIDEL H.-P 2004 (Mesh Parameterization Mesh Parameterization) 2004 $O(n^{2})$ -
Mesh Parameterization CHEN Z. G.; LIU L. G.; ZHANG Z. Y.; WANG G. J. 2007 (Mesh Parameterization Mesh Parameterization) 2007 $O(n^{2})$ -
Mesh Parameterization YANG Y.; KIM J.; LUO F.; HU S.; GU X. 2008 (Mesh Parameterization Mesh Parameterization) 2008 $O(n \log\log n)$ -
Mesh Parameterization BEN-CHEN M.; GOTSMAN C.; BUNIN G. 2008 (Mesh Parameterization Mesh Parameterization) 2008 $O(n \log^{2}n)$ -
Mesh Parameterization SPRINGBORN B.; SCHROEDER P.; PINKALL U. 2008 (Mesh Parameterization Mesh Parameterization) 2008 $O(n \log^{2}n)$ -
Maximum Likelihood Methods in Unknown Latent Variables Expectation-Maximization (EM) algorithm (Maximum Likelihood Methods in Unknown Latent Variables Maximum Likelihood Methods in Unknown Latent Variables) 1977 $O(n^{3})$ $O(n+r)$?
Maximum Likelihood Methods in Unknown Latent Variables EM with Quasi-Newton Methods (Jamshidian; Mortaza; Jennrich; Robert I.) (Maximum Likelihood Methods in Unknown Latent Variables Maximum Likelihood Methods in Unknown Latent Variables) 1997 $O(n^{2} \log^{3} n)$ $O(n+r^{2})$?
Maximum Likelihood Methods in Unknown Latent Variables Parameter-expanded expectation maximization (PX-EM) (Maximum Likelihood Methods in Unknown Latent Variables Maximum Likelihood Methods in Unknown Latent Variables) 1998 $O(n^{3})$ $O(n+r)$?
Maximum Likelihood Methods in Unknown Latent Variables Expectation conditional maximization (ECM) (Maximum Likelihood Methods in Unknown Latent Variables Maximum Likelihood Methods in Unknown Latent Variables) 1993 $O(n^{3})$ $O(n+r)$?
Maximum Likelihood Methods in Unknown Latent Variables Expectation conditional maximization either (ECME) (Liu; Chuanhai; Rubin; Donald B) (Maximum Likelihood Methods in Unknown Latent Variables Maximum Likelihood Methods in Unknown Latent Variables) 1994 $O(n^{3})$ $O(n+r)$?
Maximum Likelihood Methods in Unknown Latent Variables α-EM Algorithm (Maximum Likelihood Methods in Unknown Latent Variables Maximum Likelihood Methods in Unknown Latent Variables) 2003 $O(n^{3})$ $O(n+r)$?
Maximum Likelihood Methods in Unknown Latent Variables; multi-view model, discrete observations Shaban; Amirreza; Mehrdad; Farajtabar (Maximum Likelihood Methods in Unknown Latent Variables; multi-view model, discrete observations Maximum Likelihood Methods in Unknown Latent Variables) 2015 $O(n^{2} \log^{2} n)$ $O(kd+d^{3})$??
Maximum Likelihood Methods in Unknown Latent Variables, Hidden Markov Models alpha-HMM (Matsuyama, Yasuo) (Maximum Likelihood Methods in Unknown Latent Variables, Hidden Markov Models Maximum Likelihood Methods in Unknown Latent Variables) 2011 $O(n^{2} \log^{2} n)$ -
Matrix Factorization LU Matrix Decomposition (Matrix Factorization Collaborative Filtering) 1945 $O(n^{3})$ $O(n^{2})$
Matrix Factorization QR Matrix Decomposition (Matrix Factorization Collaborative Filtering) 1955 $O(n^{2})$ $O(n^{2})$
Matrix Factorization Cholesky Decomposition (Matrix Factorization Collaborative Filtering) 1983 $O(n^{2})$ $O(n^{2})$
Filtering Problem (Stochastic Processes) Kalman Filter (Filtering Problem (Stochastic Processes) Filtering Problem (Stochastic Processes)) 1960 $O(n^{3})$ $O(n^{2})$?
Filtering Problem (Stochastic Processes) Particle filter Del Moral (Filtering Problem (Stochastic Processes) Filtering Problem (Stochastic Processes)) 1996 $O(n^{3})$ $O(nN)$?
Filtering Problem (Stochastic Processes) Stratonovich (Filtering Problem (Stochastic Processes) Filtering Problem (Stochastic Processes)) 1959 $O(n^{3})$ -
Filtering Problem (Stochastic Processes) Stratonovich (Filtering Problem (Stochastic Processes) Filtering Problem (Stochastic Processes)) 1960 $O(n^{3})$ -
Filtering Problem (Stochastic Processes) Kushner non-linear filter (Filtering Problem (Stochastic Processes) Filtering Problem (Stochastic Processes)) 1967 $O(n^{3})$ $O(n^{2})$??
Filtering Problem (Stochastic Processes) Zakai (Filtering Problem (Stochastic Processes) Filtering Problem (Stochastic Processes)) 1969 $O(n^{3})$ -
Filtering Problem (Stochastic Processes) Maybeck; Peter S Extended Kalman Filter (Filtering Problem (Stochastic Processes) Filtering Problem (Stochastic Processes)) 1979 $O(n^{2} \log^{2} n)$ $O(n^{2})$?
Filtering Problem (Stochastic Processes) Damiano Brigo; Bernard Hanzon and François LeGland (Filtering Problem (Stochastic Processes) Filtering Problem (Stochastic Processes)) 1998 $O(n^{2.{4}5} \log n)$ -
Filtering Problem (Stochastic Processes) Del Moral; Pierre (Filtering Problem (Stochastic Processes) Filtering Problem (Stochastic Processes)) 1998 $O(n^{2})$ -
Filtering Problem (Stochastic Processes) Ocone (Filtering Problem (Stochastic Processes) Filtering Problem (Stochastic Processes)) 1999 $O(n^{2})$ -
Optimal Policies for MDPs Bellman Value Iteration (VI) (Optimal Policies for MDPs Optimal Policies for MDPs) 1957 $O({2}^n)$ $O(n)$
Optimal Policies for MDPs Howard Policy Iteration (PI) (Optimal Policies for MDPs Optimal Policies for MDPs) 1960 $O(n^{3})$ $O(n)$
Optimal Policies for MDPs Puterman Modified Policy Iteration (MPI) (Optimal Policies for MDPs Optimal Policies for MDPs) 1974 $O(n^{3})$ $O(n)$
Unweighted Set-Covering; Weighted Set-Covering Integer linear program Vazirani (Unweighted Set-Covering; Weighted Set-Covering The Set-Covering Problem) 2001 $O(n^{2})$ $O(U)$
The Set-Covering Problem Greedy Algorithm ( The Set-Covering Problem) 1996 $O(n^{3} \log n)$ $O(U)$
The Set-Covering Problem Lund & Yannakakis ( The Set-Covering Problem) 1994 $O({2}^n)$ -
The Set-Covering Problem Feige ( The Set-Covering Problem) 1998 $O({2}^n)$ -
The Set-Covering Problem Raz & Safra ( The Set-Covering Problem) 1997 $O(n^{3} \log^{3} n)$ -
The Set-Covering Problem Dinur & Steurer ( The Set-Covering Problem) 2013 $O(n^{2} \log n)$ -
The Set-Covering Problem Cardoso; Nuno; Abreu; Rui ( The Set-Covering Problem) 2014 $O(n^{2})$ -
The Set-Covering Problem Brute force ( The Set-Covering Problem) 1972 $O(U {2}^n)$ $O(U)$
Motif Search Helden Oligo-Analysis (Motif Search Motif Search) 1998 $O(mn)$ $O(m)$
Motif Search van Helden J; Rios AF; Collado-Vides J (Motif Search Motif Search) 2000 $O(mn)$ $O(m)$
Motif Search Tompa M (Motif Search Motif Search) 1999 $O(mn)$ $O(m^{2})$
Motif Search Sinha S; Tompa M YMF (Yeast Motif Finder) (Motif Search Motif Search) 2000 $O(n^{0.{6}6} m)$ $O(m)$
Motif Search Bailey TL; Elkan C MEME (Motif Search Motif Search) 1995 $O(n^{2}m^{2})$ $O(mn)$
Motif Search Sagot M (Motif Search Motif Search) 1988 $O(n \log(n)$ m^{1.{4}5}) $O(mn^{2}/w)$
Motif Search Liang Cwinnower (Motif Search Motif Search) 2003 $O(nm^{0.5})$ $O(m^{2})$
Motif Search Kingsford (Motif Search Motif Search) 2006 $O(mn)$ $O(m^{2}n^{2})$
All Maximal Non-Branching Paths in a Graph Naive (All Maximal Non-Branching Paths in a Graph All Maximal Non-Branching Paths in a Graph) 1940 $O(m)$ $O(n)$?
InDegree Analysis The INDEGREE Algorithm (InDegree Analysis Link Analysis) 1997 $O(mn)$ $O(n)$
Link Analysis The PAGERANK Algorithm (Link Analysis Link Analysis) 1998 $O(m n )$ $O(n)$
Link Analysis The (Hyperlink-Induced Topic Search) HITS Algorithm (Link Analysis Link Analysis) 1998 $O(n^{2} k)$ $O(n)$
Link Analysis Kleinberg (Link Analysis Link Analysis) 1998 $O(m^{2} n )$ -
Link Analysis The (Stochastic Approach for Link Structure Analysis) SALSA Algorithm (Link Analysis Link Analysis) 2000 $O(m^{2} n )$ $O(n)$?
Link Analysis Randomized HITS (Link Analysis Link Analysis) 2001 $O(m n\log n )$ $O(n)$
Link Analysis PHITS Coheng Chan (Link Analysis Link Analysis) 2000 $O(m n )$ $O(nz)$?
Link Analysis Haveliwala (Link Analysis Link Analysis) 2002 $O(m n )$ $O(nz)$?
Link Analysis Jeh and Widom (Link Analysis Link Analysis) 2003 $O(m n )$ $O(nh)$
Link Analysis Richardson and Domingos (Link Analysis Link Analysis) 2002 $O(m n )$ $O(nl)$
Link Analysis Tomlin (Link Analysis Link Analysis) 2003 $O(m n )$ $O(n)$?
Link Analysis Achlioptas (Link Analysis Link Analysis) 2001 $O(mn )$ $O((n+l)$^{2})?
Distributed Locking Algorithms Leases (Cary G Gray and David R Cheriton) (Distributed Locking Algorithms Distributed Locking Algorithms) 1989 $O(n)$ $O(f)$?
Distributed Locking Algorithms Chubby (Mike Burrows) (Distributed Locking Algorithms Distributed Locking Algorithms) 2006 $O(n)$ $O(f)$?
Distributed Locking Algorithms Tushar Deepak Chandra and Sam Toueg (Distributed Locking Algorithms Distributed Locking Algorithms) 1996 $O(n)$ -
Cyclic Peptide Sequencing Problem Brute force (Cyclic Peptide Sequencing Problem Cyclic Peptide Sequencing Problem) 1987 ${2}^{O(n)}$ $O(n)$
Cyclic Peptide Sequencing Problem Branch and bound (Cyclic Peptide Sequencing Problem Cyclic Peptide Sequencing Problem) 1993 ${2}^{O(n)}$ $O({2}^{O(n)})$
Point-in-Polygon Ray casting algorithm Shimrat; M (Point-in-Polygon Point-in-Polygon) 1962 $O(n)$ $O({1})$
Point-in-Polygon Nordbeck and Rystedt (Grid Method) (Point-in-Polygon Point-in-Polygon) 1967 $O(n)$ $O(n)$
Point-in-Polygon Salomon (Swath Method) (Point-in-Polygon Point-in-Polygon) 1978 $O(n\log n)$ $O(n^{2})$
Point-in-Polygon Nordbeck and Rystedt (Sum of area) (Point-in-Polygon Point-in-Polygon) 1967 $O(n)$ $O({1})$
Point-in-Polygon Preparata and Shamos (Wedge) (Point-in-Polygon Point-in-Polygon) 1985 $O(n)$ $O(n)$
Point-in-Polygon Saalfeld (Sign of offset) (Point-in-Polygon Point-in-Polygon) 1987 $O(n)$ $O({1})$
Point-in-Polygon Preparata and Shamos (Intersection sum of angle) (Point-in-Polygon Point-in-Polygon) 1985 $O(n)$ $O({1})$
Point-in-Polygon Nordbeck and Rystedt (Orientation) (Point-in-Polygon Point-in-Polygon) 1967 $O(n)$ $O({1})$
Clock Synchronization in Distributed Systems ASP (Clock Synchronization in Distributed Systems Clock Synchronization in Distributed Systems) 2005 $O(n)$ $O(n)$ (per node)
Clock Synchronization in Distributed Systems Clock-sampling mutual network synchronization (Clock Synchronization in Distributed Systems Clock Synchronization in Distributed Systems) 2007 $O(n)$ $O({1})$? (per node)
Clock Synchronization in Distributed Systems MATSF (Clock Synchronization in Distributed Systems Clock Synchronization in Distributed Systems) 2004 $O(n)$ $O(n)$? (per node)
d-Neighborhood of a String Iterative naive (d-Neighborhood of a String d-Neighborhood of a String) 1940 $O(f_{bin}(sigma-{1}, n, d)$) where f_{bin}(x, y, z) = sum_{i=0}^z C(y, i)*x^i $O(n)$
Maximum Cut Hadlock (Maximum Cut Maximum Cut) 1975 $O({2}^n)$ -
Maximum Cut, Approximate Motwani & Raghavan (Maximum Cut, Approximate Maximum Cut) 1995 $O(n)$? $O(n)$
Maximum Cut, Approximate Mitzenmacher & Upfal (Maximum Cut, Approximate Maximum Cut) 2005 $O(mn)$? $O(n)$
Maximum Cut, Approximate Khuller; Raghavachari & Young, "Greedy Methods" (Maximum Cut, Approximate Maximum Cut) 2007 $O(n^{2})$? $O(n)$
Maximum Cut, Approximate Ausiello et al. (Maximum Cut, Approximate Maximum Cut) 2003 $O(n^{3} \log m)$ $O(n^{2})$?
Maximum Cut, Approximate Dunning; Gupta & Silberholz (Maximum Cut, Approximate Maximum Cut) 2018 $O(mn)$ -
Minimum Wiener Connector problem Ruchansky (Minimum Wiener Connector problem Wiener Index) 2015 $O(q(m*log(n)$+n*log^{2}(n))) $O(q(m+n*log(n)$)?
Determinant of Matrices with Integer Entries Bareiss algorithm (Determinant of Matrices with Integer Entries Determinant of Matrices with Integer Entries) 1968 $O(n^{5} L^{2} (\log(n)$^{2} + L^{2})) $O(n^{2}(n*log(n)$+nL))
Determinant of Matrices with Integer Entries Bareiss algorithm with fast multiplication (Determinant of Matrices with Integer Entries Determinant of Matrices with Integer Entries) 1968 $O(n^{4} L (\log(n)$ + L) \log(\log(n) + L)) $O(n^{2}(n*log(n)$+nL))
Integer Relation Ferguson–Forcade algorithm (Integer Relation Integer Relation) 1979 $O(n^{3})$ $O(n^{2})$
Integer Relation LLL algorithm (Integer Relation Integer Relation) 1982 $O(n^{4})$ $O(n^{2})$
Integer Relation PSOS algorithm (Integer Relation Integer Relation) 1988 $O(n^{3})$ $O(n^{2})$
Integer Relation PSLQ algorithm (Integer Relation Integer Relation) 1992 $O(n^{3})$ $O(n^{2})$
Sequence-to-Graph Alignment Amir et al. (Sequence-to-Graph Alignment Sequence-to-Graph Alignment) 1997 $O(m(n \log m + E)$) $O(mn)$
Sequence-to-Graph Alignment Navarro (Sequence-to-Graph Alignment Sequence-to-Graph Alignment) 2000 $O(n(V + E)$) $O(V)$
Sequence-to-Graph Alignment HybridSpades (Sequence-to-Graph Alignment Sequence-to-Graph Alignment) 2015 $O(m(V \log(mV)$ + E)) $O(m*(V+E)$)
Sequence-to-Graph Alignment V-ALIGN (Sequence-to-Graph Alignment Sequence-to-Graph Alignment) 2018 $O(mVE)$ $O(mV)$
Sequence-to-Graph Alignment Rautiainen and Marschall (Sequence-to-Graph Alignment Sequence-to-Graph Alignment) 2017 $O(V+ mE)$ $O(\sqrt(m)V)$
Sequence-to-Graph Alignment Jain, Chang (Sequence-to-Graph Alignment Sequence-to-Graph Alignment) 2019 $O(V+ mE)$ $O(V)$
Sequence-to-Graph Alignment Rautiainen, Marschall (Sequence-to-Graph Alignment Sequence-to-Graph Alignment) 2019 $O(V + mE)$ $O(mV)$
Discrete Logarithm Over Finite Fields Trial Multiplication (Discrete Logarithm Over Finite Fields Logarithm Calculations) 1940 $O({2}^n)$ $O({1})$
Discrete Logarithm Over Finite Fields Baby-step Giant-step (Discrete Logarithm Over Finite Fields Logarithm Calculations) 1971 $O({2}^{\sqrt{n}})$ $O({2}^{\sqrt{n}})$
Discrete Logarithm Over Finite Fields Function Field Sieve (FFS) (Discrete Logarithm Over Finite Fields Logarithm Calculations) 1999 $O({2}^n)$ $O(n^{2/3})$?
Discrete Logarithm Over Finite Fields, F_q Index calculus algorithm (Discrete Logarithm Over Finite Fields, F_q Logarithm Calculations) 1922 $O(e^{(\sqrt({2}) \sqrt(n*logn))})$ $O(n+r^{2})$?
Discrete Logarithm Over Finite Fields Number Field Sieve (NFS) (Discrete Logarithm Over Finite Fields Logarithm Calculations) 1990 $O({2}^n)$ $O(n^{2/3})$
Discrete Logarithm Over Finite Fields Pohlig-Hellman (Discrete Logarithm Over Finite Fields Logarithm Calculations) 1978 $O({2}^{\sqrt{n}})$, only for primes; does much better for composites $O({2}^{\sqrt{n}})$ (though only for primes)
Discrete Logarithm Over Finite Fields Pollard's rho algorithm (Discrete Logarithm Over Finite Fields Logarithm Calculations) 1978 $O({2}^{(n/{2})})$ $O({1})$
Discrete Logarithm Over Finite Fields Pollard's kangaroo algorithm (Discrete Logarithm Over Finite Fields Logarithm Calculations) 1978 $O({2}^n)$ $O({1})$
Self-Balancing Trees Creation AVL Tree ( Self-Balancing Trees Creation) 1962 $O(n \log n)$ $O(n)$
Self-Balancing Trees Creation Guibas, Sedgewick Red-Black Tree ( Self-Balancing Trees Creation) 1972 $O(n \log n)$ $O(n)$
Self-Balancing Trees Creation Hopcroft 2-3 Tree ( Self-Balancing Trees Creation) 1970 $O(n \log n)$ $O(n)$
Self-Balancing Trees Creation Tarjan Splay Tree ( Self-Balancing Trees Creation) 1985 $O(n \log n)$ $O(n)$
Self-Balancing Trees Creation Bayer, McCreight B-Tree ( Self-Balancing Trees Creation) 1970 $O(n*b*\log(n)$/\log(b))? $O(n)$
Self-Balancing Trees Insertion Hopcroft 2-3 Tree ( Self-Balancing Trees Insertion) 1970 $O(\log n)$ $O({1})$
Self-Balancing Trees Insertion Guibas, Sedgewick Red-Black Tree ( Self-Balancing Trees Insertion) 1972 $O(\log n)$ $O({1})$
Self-Balancing Trees Deletion Hopcroft 2-3 Tree ( Self-Balancing Trees Deletion) 1970 $O(\log n)$ $O({1})$
Self-Balancing Trees Deletion Guibas, Sedgewick Red-Black Tree ( Self-Balancing Trees Deletion) 1972 $O(\log n)$ $O({1})$
Self-Balancing Trees Search Hopcroft 2-3 Tree ( Self-Balancing Trees Search) 1970 $O(\log n)$ $O({1})$
Self-Balancing Trees Search Guibas, Sedgewick Red-Black Tree ( Self-Balancing Trees Search) 1972 $O(\log n)$ $O({1})$
Transitive Reduction Problem of Directed Graphs Aho, Garey & Ullman (Transitive Reduction Problem of Directed Graphs Transitive Reduction Problem) 1972 $O(n^omega)$ where omega is the exponent on boolean matrix multiplication $O(n^{2})$
Transitive Reduction Problem of Directed Graphs Aho, Garey & Ullman (Transitive Reduction Problem of Directed Graphs Transitive Reduction Problem) 1972 $O(n^{2.807})$ $O(n^{2})$
Transitive Reduction Problem of Directed Graphs Aho, Garey & Ullman (Transitive Reduction Problem of Directed Graphs Transitive Reduction Problem) 1978 $O(n^{2.8})$ $O(n^{2})$
Transitive Reduction Problem of Directed Graphs Aho, Garey & Ullman (Transitive Reduction Problem of Directed Graphs Transitive Reduction Problem) 1979 $O(n^{2.78})$ $O(n^{2})$
Transitive Reduction Problem of Directed Graphs Aho, Garey & Ullman (Transitive Reduction Problem of Directed Graphs Transitive Reduction Problem) 1980 $O(n^{2.52})$ $O(n^{2})$
Transitive Reduction Problem of Directed Graphs Aho, Garey & Ullman (Transitive Reduction Problem of Directed Graphs Transitive Reduction Problem) 1980 $O(n^{2.518})$ $O(n^{2})$
Transitive Reduction Problem of Directed Graphs Aho, Garey & Ullman (Transitive Reduction Problem of Directed Graphs Transitive Reduction Problem) 1981 $O(n^{2.495})$ $O(n^{2})$
Transitive Reduction Problem of Directed Graphs Aho, Garey & Ullman (Transitive Reduction Problem of Directed Graphs Transitive Reduction Problem) 1986 $O(n^{2.48})$ $O(n^{2})$
Transitive Reduction Problem of Directed Graphs Aho, Garey & Ullman (Transitive Reduction Problem of Directed Graphs Transitive Reduction Problem) 1990 $O(n^{2.372})$ $O(n^{2})$
Transitive Reduction Problem of Directed Graphs Aho, Garey & Ullman (Transitive Reduction Problem of Directed Graphs Transitive Reduction Problem) 2014 $O(n^{2.373})$ $O(n^{2})$
Transitive Reduction Problem of Directed Graphs Aho, Garey & Ullman (Transitive Reduction Problem of Directed Graphs Transitive Reduction Problem) 2014 $O(n^{2.371})$ $O(n^{2})$
Transitive Reduction Problem of Directed Graphs Gries, Martin (Transitive Reduction Problem of Directed Graphs Transitive Reduction Problem) 1989 $O(n^{3})$ $O(n^{2})$
Turnpike Problem Outside-In algorithm (Turnpike Problem Turnpike Problem) 1991 $O({2}^n nlogn)$ $O(n)$
Counting Solutions; Constructing solutions Naive Algorithm (Counting Solutions; Constructing solutions n-Queens Problem) 1848 $O(n^n)$ $O(n)$
Counting Solutions; Constructing solutions Naive + 1 queen per row restriction (Counting Solutions; Constructing solutions n-Queens Problem) 1850 $O(n!)$ $O(n)$
Counting Solutions; Constructing solutions Dijkstra (Counting Solutions; Constructing solutions n-Queens Problem) 1972 $O(n!)$ $O(n)$
Counting Solutions; Constructing solutions Nauck (Counting Solutions; Constructing solutions n-Queens Problem) 1850 $O(n!)$ -
Counting Solutions; Constructing solutions Gunther Determinants solution (Counting Solutions; Constructing solutions n-Queens Problem) 1874 $O(n!)$ $O(n!)$ ?
Counting Solutions Rivin, Zabih (Counting Solutions n-Queens Problem) 1992 $O({8}^n*poly(n)$) $O({8}^n*n^{2})$
Median String Problem with Unbounded Alphabets Naive Solution (Median String Problem with Unbounded Alphabets Median String Problem) 1965 {2}^$O(n)$ $O(n)$
Frequent Words with Mismatches Problem Naive solution ( Frequent Words with Mismatches Problem) 1940 $O(n*f_{bin}(sigma-{1}, k, d)$) where f_{bin}(x, y, z) = sum_{i=0}^z C(y, i)*x^i $O(max(n*f_{bin}(sigma-{1}, k, d)$, sigma^k)) auxiliary where f_{bin}(x, y, z) = sum_{i=0}^z C(y, i)*x^i
Tower of Hanoi Iteration based (Tower of Hanoi Tower of Hanoi) 1883 $O({2}^n)$ $O(n)$
Tower of Hanoi Recursion based (Tower of Hanoi Tower of Hanoi) 1940 $O({2}^n)$ $O(n \log n)$
Tower of Hanoi Non-recursion based (Tower of Hanoi Tower of Hanoi) 1940 $O({2}^n)$ $O(n)$
Tower of Hanoi Gray-code based (Tower of Hanoi Tower of Hanoi) 1940 $O({2}^n)$ $O(n)$
Tower of Hanoi Hanoi graph (Tower of Hanoi Tower of Hanoi) 2008 $O({2}^n)$ -
The Frequent Words Problem Naive solution (The Frequent Words Problem The Frequent Words Problem) 1940 $O(n)$ $O(max(n, \sigma^k)$)
The Frequent Words Problem Rabin Karp (The Frequent Words Problem The Frequent Words Problem) 1987 $O(n)$ $O(max(n, \sigma^k)$)?
Integral Equations Naive Implementation ( Integral Equations) 1800 $O({2}^n)$ -
Unkeyed Hash Functions MD5 (Unkeyed Hash Functions One-Way Hash Functions) 1991 $O(n)$ $O({1})$ auxiliary?
Unkeyed Hash Functions SHA-1 (Unkeyed Hash Functions One-Way Hash Functions) 1993 $O(n)$ $O({1})$ auxiliary?
Unkeyed Hash Functions RIPEMD-160 (Unkeyed Hash Functions One-Way Hash Functions) 1996 $O(n)$ $O({1})$ auxiliary?
Unkeyed Hash Functions bcrypt (Unkeyed Hash Functions One-Way Hash Functions) 1999 $O(n)$ $O({1})$ auxiliary??
One-Way Hash Functions Whirlpool ( One-Way Hash Functions) 2000 $O(n)$ $O({1})$ auxiliary?
Unkeyed Hash Functions SHA-2 (Unkeyed Hash Functions One-Way Hash Functions) 2001 $O(n)$ $O({1})$ auxiliary?
Unkeyed Hash Functions SHA-3 (Unkeyed Hash Functions One-Way Hash Functions) 2015 $O(n)$ $O(b+d)$ auxiliary?
Optional Key? BLAKE2 (Optional Key? One-Way Hash Functions) 2012 $O(n)$ $O({1})$ auxiliary?
Secret Sharing Shamir's scheme ( Secret Sharing) 1979 $O(t^{2})$ for secret computation? (requires polynomial interpolation) $O({1})$ per person, $O(t^{2})$ to figure out secret?
Secret Sharing Blakley's scheme ( Secret Sharing) 1979 $O(t^{3})$ for secret computation? (requires linear solver) $O(t)$ per person, $O(t^{2})$ to figure out secret
Solutions to Nonlinear Equations Bisection method (Solutions to Nonlinear Equations Solutions to Nonlinear Equations) -150 $O(n_{max})$ $O({1})$
Solutions to Nonlinear Equations Regula Falsi method (Solutions to Nonlinear Equations Solutions to Nonlinear Equations) -200 $O(n_{max})$ $O({1})$
Solutions to Nonlinear Equations Secant method (Solutions to Nonlinear Equations Solutions to Nonlinear Equations) -1400 $O(n_{max})$ $O({1})$
Solutions to Nonlinear Equations Newton's method (Solutions to Nonlinear Equations Solutions to Nonlinear Equations) 1669 $O(n_{max})$ $O({1})$
Block Ciphers Lucifer / DES (Block Ciphers Block Ciphers) 1976 $O(n)$ $O(n)$?
Block Ciphers IDEA (Block Ciphers Block Ciphers) 1991 $O(n)$ $O(n)$?
Block Ciphers RC5 (Block Ciphers Block Ciphers) 1994 $O(n)$ $O(k+rw)$?
Block Ciphers Rijndael / AES (Block Ciphers Block Ciphers) 2001 $O(n)$ $O(n)$?
Block Ciphers Blowfish (Block Ciphers Block Ciphers) 1993 $O(n)$ $O(n)$?
2-D Polynomial Interpolation Gaussian elimination (2-D Polynomial Interpolation Polynomial Interpolation) -150 $O(n^{3})$ $O(n^{2})$
2-D Polynomial Interpolation Bjorck (2-D Polynomial Interpolation Polynomial Interpolation) 1970 $O(n^{2})$ $O(n)$
2-D Polynomial Interpolation Higham (2-D Polynomial Interpolation Polynomial Interpolation) 1988 $O(n^{2})$ $O(n)$
2-D Polynomial Interpolation Calvetti, Reichel (2-D Polynomial Interpolation Polynomial Interpolation) 1993 $O(n^{2})$ $O(n)$?
Greatest Common Divisor Euclid's algorithm (Greatest Common Divisor Greatest Common Divisor) -300 $O(n^{2})$ $O(n)$
Greatest Common Divisor Lehmer's GCD algorithm (Greatest Common Divisor Greatest Common Divisor) 1940 $O(n^{2})$ $O(n)$
Greatest Common Divisor Binary GCD algorithm (Greatest Common Divisor Greatest Common Divisor) 1967 $O(n^{2})$ $O(n)$
Greatest Common Divisor Sthele, Zimmermann (Greatest Common Divisor Greatest Common Divisor) 2006 $O(n \log^{2} n \log \log n)$ $O(n)$??
Weighted Activity Selection Problem Brute force algorithm (Weighted Activity Selection Problem Interval Scheduling) 1940 $O({2}^n)$ $O(n)$
Weighted Activity Selection Problem $O(n^3)$ Dynamic Programming (Weighted Activity Selection Problem Interval Scheduling) 1953 $O(n^{3})$ $O(n^{2})$
Weighted Activity Selection Problem $O(n^2)$ Dynamic Programming (Weighted Activity Selection Problem Interval Scheduling) 1953 $O(n^{2})$ $O(n)$
Weighted Activity Selection Problem $O(n\log n)$ Dynamic Programming (Weighted Activity Selection Problem Interval Scheduling) 1953 $O(n \log n)$ $O(n)$
Unweighted Interval Scheduling, Online Fixed priority shortest job first (Unweighted Interval Scheduling, Online Interval Scheduling) 1940 $O(n \log n)$ $O(n+k)$?
Unweighted Interval Scheduling, Online Priority scheduling (Unweighted Interval Scheduling, Online Interval Scheduling) 1940 $O(n)$ $O(n+k)$?
Unweighted Interval Scheduling, Online Shortest remaining time first (Unweighted Interval Scheduling, Online Interval Scheduling) 1940 $O(n)$ $O(n+k)$?
Unweighted Interval Scheduling, Online First come, first served (Unweighted Interval Scheduling, Online Interval Scheduling) 1940 $O(n)$ $O(n+k)$?
Unweighted Interval Scheduling, Online Round-robin scheduling (Unweighted Interval Scheduling, Online Interval Scheduling) 1940 $O(n)$ $O(n+k)$?
Unweighted Interval Scheduling, Online Multilevel queue scheduling (Unweighted Interval Scheduling, Online Interval Scheduling) 1940 $O(n)$ $O(n+k)$?
Unweighted Interval Scheduling, Online Work-conserving schedulers (Unweighted Interval Scheduling, Online Interval Scheduling) 1940 $O(n)$ -
Deadlock Avoidance Banker's Algorithm (Deadlock Avoidance Deadlock avoidance) 1966 $O(mn^{2})$ $O(mn)$
Offline The theoretically optimal page replacement algorithm (Offline Page Replacements) 1940 $O(n^{2})$ $O(k)$
Online Not recently used (Online Page Replacements) 1940 $O(nk)$? $O(k)$
Online First-in, first-out (Online Page Replacements) 1940 $O(nk)$? $O(k)$
Online Second-chance (Online Page Replacements) 1940 $O(nk)$? $O(k)$
Online Clock (Online Page Replacements) 1940 $O(nk)$? $O(k)$
Online Least recently used (Online Page Replacements) 1940 $O(nk)$? $O(k)$
Online Random (Online Page Replacements) 1940 $O(n)$ $O(k)$?
Online Not frequently used (NFU) (Online Page Replacements) 1940 $O(nk)$? $O(k)$
Online Aging (Online Page Replacements) 1940 $O(nk)$? $O(k)$
Online Longest distance first (LDF) page replacement algorithm (Online Page Replacements) 2017 $O(nk)$? $O(k)$
Steal, No-Force ARIES (Steal, No-Force Recovery) 1992 $O(n)$ $O(n)$?
Arbitrary edge weights, Dense graph Dense APSP algorithm (Arbitrary edge weights, Dense graph Graph Diameter) - $O(V^{3} / {2}^(logV)$^{0.5}) -
Arbitrary edge weights, Sparse graph Sparse APSP algorithm (Arbitrary edge weights, Sparse graph Graph Diameter) - $O(V^{2}logV+VE)$ -
Unweighted Binary representation search with matrix multiplication (Unweighted Graph Diameter) - $O(V^omega log(V)$) where omega is the exponent on matrix multiplication $O(V^{2} logV)$
Bounded integer weights Cygan, Gabow, Sankowski (Bounded integer weights Graph Diameter) 2012 $O(M*V^omega*polylog(M, V)$) -
Boolean Matrix Multiplication Output-Sensitive Quantum BMM (Boolean Matrix Multiplication Matrix Product) 2018 O*( \min \{n^{1/3} L^{17/{3}0}, n^{1.5} L^{1/4}\}) -
Boolean Matrix Multiplication (Combinatorial) (Boolean Matrix Multiplication (Combinatorial) Matrix Product) 2018 $O(n^{3} / log^{2.25} n)$ -
Boolean Matrix Multiplication O'Neil 1973 (Boolean Matrix Multiplication Matrix Product) 1973 $O(n^{3})$ -
Boolean Matrix Multiplication (Combinatorial) Method of Four Russians (Boolean Matrix Multiplication (Combinatorial) Matrix Product) 1970 $O(n^{3}/(log n)$^{2}) -
Boolean Matrix Multiplication (Combinatorial) Bansal, Williams (Boolean Matrix Multiplication (Combinatorial) Matrix Product) 2009 $O(n^{3} * (log log n)$^{2} / log^{2.25} n) -
Boolean Matrix Multiplication (Combinatorial) Bansal, Williams (Boolean Matrix Multiplication (Combinatorial) Matrix Product) 2009 $O(n^{3} * (log log n)$^{2} / (w * (log n)^{7}/{6})) -
Boolean Matrix Multiplication (Combinatorial) Chan (Boolean Matrix Multiplication (Combinatorial) Matrix Product) 2015 $O(n^{3} * (log log n)$^{3} / log^{3} n) -
Boolean Matrix Multiplication (Combinatorial) Chan (Boolean Matrix Multiplication (Combinatorial) Matrix Product) 2015 $O(n^{3} * (log w)$^{3} / (w * log^{2} n)) -
Boolean Matrix Multiplication (Combinatorial) Yu (Boolean Matrix Multiplication (Combinatorial) Matrix Product) 2015 $O(n^{3}*poly(log log n)$/log^{4} n) -
Online Matrix Vector Multiplication (OMV) Williams ( Online Matrix Vector Multiplication (OMV)) 2007 $O(n^{3} / (log n)$^{2}) -
Online Matrix Vector Multiplication (OMV) Larsen, Williams (Theorem 1.1) ( Online Matrix Vector Multiplication (OMV)) 2017 $O(n^{3} / {2}^(Omega(sqrt(log n)$))) -
Online Matrix Vector Multiplication (OMV) Larsen, Williams (follows from Theorem 2.1) ( Online Matrix Vector Multiplication (OMV)) 2017 $O(n^({11}/{4})$ / sqrt(log n)) -
Negative Triangle ( Negative Triangle) 2018 - -
Sorting - Comparison Parallel Merge Sort - Cole (1) ( Sorting - Comparison) 1988 $O(logn)$ -
Sorting - Comparison Parallel Merge Sort - Cole (2) ( Sorting - Comparison) 1988 $O(logn)$ -
Maximum Flow MKM Algorithm ( Maximum Flow) 1978 $O(V^{3})$ $O(E)$
Maximum Flow Galil ( Maximum Flow) 1978 $O(V^({5}/{3})$E^({2}/{3})) $O(E)$
Maximum Flow Shiloach ( Maximum Flow) 1981 $O(V^{3}*log(V)$/p) $O(E)$
Maximum Flow Gabow ( Maximum Flow) 1985 $O(VE*logU)$ $O(E)$
Maximum Flow Lee, Sidford ( Maximum Flow) 2014 $O(E*sqrt(V)$*log^{2}(U)*polylog(E, V, log(U)) $O(E)$
Maximum Flow Madry ( Maximum Flow) 2016 $O(E^({10}/{7})$U^({1}/{7})polylog(V, E, log U)) $O(E)$
Maximum Flow Kathuria, Liu, Sidford ( Maximum Flow) 2020 $O(E^({1}+o({1})$)/sqrt(eps)) $O(E)$ or $O(V^{2})$ ?
Maximum Flow Kathuria, Liu, Sidford ( Maximum Flow) 2020 $O(E^({4}/{3}+o({1})$)U^({1}/{3})) $O(E)$ or $O(V^{2})$ ?
Maximum Flow Brand et al ( Maximum Flow) 2021 $O((E+V^{1.5})$log(U)polylog(V, E, log U)) $O(E)$
Maximum Flow Gao, Liu, Peng ( Maximum Flow) 2021 $O(E^({3}/{2}-{1}/{328})$*log(U)*polylog(E)) $O(E)$
Maximum Flow Chen et al ( Maximum Flow) 2022 $O(E^({1}+o({1})$)*log(U)) $O(E)$
Integer Maximum Flow Goldberg & Rao (Parallel) (Integer Maximum Flow Maximum Flow) 1997 $O(V^{1.66} log(V)$ log(U)) $O(V^{2})$
Integer Maximum Flow Goldberg & Rao (Parallel) (Integer Maximum Flow Maximum Flow) 1997 $O(E^{0.5} V log(V)$ log(U)) $O(V^{2})$
Matrix Multiplication Method of Four Russians ( Matrix Multiplication) 1970 $O(n^{3}/log n)$ -
Matrix Multiplication Alman, Vassilevska Williams ( Matrix Multiplication) 2020 $O(n^{2.37285956})$ $O(n^{2})$
5 - Graph Coloring Byskov ( 5 - Graph Coloring) 2004 $O({2.1592}^n)$ -
5 - Graph Coloring Bjorklund, Husfeldt, Theorem 1 ( 5 - Graph Coloring) 2006 $O({2}^n*poly(n)$) $O({2}^n*poly(n)$)
5 - Graph Coloring Bjorklund, Husfeldt, Proposition 2 ( 5 - Graph Coloring) 2006 $O({2.2461}^n)$ $O(poly(n)$)
5 - Graph Coloring Zamir ( 5 - Graph Coloring) 2021 $O(({2}-eps)$^n) for some eps>{0} -
6 - Graph Coloring Byskov, Theorem 14 ( 6 - Graph Coloring) 2004 $O({2.3289}^n)$ -
6 - Graph Coloring Byskov, Theorem 20 ( 6 - Graph Coloring) 2004 $O({2.2680}^n)$ $O({2}^n)$
6 - Graph Coloring Bjorklund, Husfeldt, Theorem 1 ( 6 - Graph Coloring) 2006 $O({2}^n*poly(n)$) $O({2}^n*poly(n)$)
6 - Graph Coloring Bjorklund, Husfeldt, Proposition 2 ( 6 - Graph Coloring) 2006 $O({2.2461}^n)$ $O(poly(n)$)
6 - Graph Coloring Zamir ( 6 - Graph Coloring) 2021 $O(({2}-eps)$^n) for some eps>{0} -
Chromatic Number Christofides ( Chromatic Number) 1971 $O(n!*poly(n)$) $O(poly(n)$)
Chromatic Number Lawler ( Chromatic Number) 1976 $O(mn({1}+{3}^({1}/{3})$)^n) $O({2}^n*log(n)$)
Chromatic Number Eppstein ( Chromatic Number) 2003 $O(({4}/{3}+{3}^({4}/{3})$/{4})^n) ~ $O({2.4151}^n)$ $O({2}^n)$
Chromatic Number Byskov ( Chromatic Number) 2004 $O({80}^(n/{5})$) ~ $O({2.4023}^n)$ $O({2}^n)$
Chromatic Number Bjorklund, Husfeldt, Theorem 1 ( Chromatic Number) 2006 $O({2}^n*poly(n)$) $O({2}^n*poly(n)$)
Chromatic Number Bjorklund, Husfeldt, Proposition 2 ( Chromatic Number) 2006 $O({2.2461}^n)$ $O(poly(n)$)
Chromatic Number Koivisto ( Chromatic Number) 2006 $O({2}^n*poly(n)$) -
#2 - Graph Coloring BFS/DFS for connected components ( #2 - Graph Coloring) - $O(m)$ $O(n)$ auxiliary
#3 - Graph Coloring Angelsmark, Jonsson ( #3 - Graph Coloring) 2003 $O({1.7879}^n)$ -
#3 - Graph Coloring Fürer, Kasiviswanathan ( #3 - Graph Coloring) 2005 $O({1.7702}^n*poly(n)$) -
#3 - Graph Coloring Fomin; Gaspers & Saurabh ( #3 - Graph Coloring) 2007 $O({1.6262}^n)$ -
#4 - Graph Coloring Fomin; Gaspers & Saurabh ( #4 - Graph Coloring) 2007 $O({1.9464}^n)$ -
Chromatic Polynomial Zykov (deletion-contraction) ( Chromatic Polynomial) 1949 $O((({1}+sqrt5)$/{2})^(n+m)) -
Chromatic Polynomial Bjorklund, Husfeldt, Proposition 3 ( Chromatic Polynomial) 2006 $O({2}^n*poly(n)$) $O({2}^n*poly(n)$) => $O({1.292}^n)$
Chromatic Polynomial Koivisto ( Chromatic Polynomial) 2006 $O({2}^n*poly(n)$) -
General LU decomposition (General Linear system of equations) - O (n^{3}) $O(n^{2})$
General Matrix inverse (General Linear system of equations) - $O(n^omega)$ where omega is the exponent on the complexity of matrix multiplication;
currently $O(n^{2.37285956})$
$O(n^{2})$
Toeplitz Asymptotically fast Toeplitz algorithms (Toeplitz Linear system of equations) 2008? $O(n*log^{2}(n)$) $O(n*log^{2}(n)$)?
Sparse Peng, Vempala (Sparse Linear system of equations) 2020 $O(max(m^{(omega-{2})/(omega-{1})}*n^{2}, n^{({5}*omega-{4})/(omega+{1})})*log^{2}(k/epsilon))$ where omega is the exponent on the complexity of matrix multiplication;

currently $O(n^{2.331642})$ || -

Linear Programming Vaidya ( Linear Programming) 1987 $O(((m+n)$n^{2}+(m+n)^{1.5}*n)L^{2} logL loglogL) $O((nm+n^{2})$L)?
Linear Programming Vaidya ( Linear Programming) 1989 $O((m+n)$^{1.5}*n*L^{2} logL loglogL) $O((nm+n^{2})$L)?
Linear Programming Jiang, Song, Weinstein and Zhang ( Linear Programming) 2020 $O(n^(max(omega, {2.5}-alpha/{2}, {37}/{18}))*polylog(n, m, L))$, where omega is the exponent on matrix multiplication, alpha is the dual exponent of matrix multiplication;

currently $O(n^{2.37285956})$ || -

Counting number of intersection points / line segments CHAZELLE 1986 (Counting number of intersection points / line segments Line segment intersection) 1986 $O(n^{1.695})$ $O(n)$
Reporting all intersection points / general polygons NIEVERGELT. J.. AND PREPARATA (Section 2) (Reporting all intersection points / general polygons Line segment intersection) 1982 $O((n+k)$log n) $O(n+k)$
d-dimensional Convex Hull Seidel's Shelling Algorithm (d-dimensional Convex Hull Convex Hull) 1986 $O(n^{2}+f_1*log(n)$) -
d-dimensional Convex Hull Chand-Kapur, Gift Wrapping (d-dimensional Convex Hull Convex Hull) 1970 $O(n*f_1)$ -
d-dimensional Convex Hull N-dimensional Quickhull (d-dimensional Convex Hull Convex Hull) 1996 $O(n*f(h)$/h) where f(h) denotes the maximum number of facets with h vertices -
2-dimensional Convex Hull, Online Online 2-d Convex Hull, Preparata (2-dimensional Convex Hull, Online Convex Hull) 1979 $O(logn)$ per operation, $O(n*log(n)$) total $O(n)$
2-dimensional Convex Hull, Dynamic Dynamic 2-d Convex Hull, Overmars and van Leeuwen (2-dimensional Convex Hull, Dynamic Convex Hull) 1980 $O(log^{2}(n)$) per operation, $O(n*log^{2}(n)$) total -
2-dimensional Convex Hull, Dynamic (many more...) (2-dimensional Convex Hull, Dynamic Convex Hull) - - -
SCCs Geldenhuys-Valmari (SCCs Strongly Connected Components) 2004 $O(V+E)$ $O(V)$?
SCCs Multistep (SCCs Strongly Connected Components) 2014 $O(V^{2}+E)$ $O(V+E)$ total?
Undirected, General MST Prim's algorithm + binary heap (Undirected, General MST Minimum Spanning Tree (MST)) - $O(ElogV)$ $O(V)$ auxiliary?
Undirected, General MST Fredman & Tarjan (Undirected, General MST Minimum Spanning Tree (MST)) 1987 $O(E*beta(E, V)$) where beta(m, n) = min(i such that log^(i)(n)≤m/n); this is also $O(E (log-star)$V) $O(E)$ auxiliary?
Undirected, Dense MST Cheriton-Tarjan (dense) (Undirected, Dense MST Minimum Spanning Tree (MST)) 1976 $O(E)$ $O(E)$ auxiliary?
Undirected, Planar MST Cheriton-Tarjan (planar) (Undirected, Planar MST Minimum Spanning Tree (MST)) 1976 $O(V)$ $O(V)$ auxiliary
Undirected, General MST Gabow et al, Section 2 (Undirected, General MST Minimum Spanning Tree (MST)) 1986 $O(E*log(beta(E, V)$)) $O(E)$ auxiliary?
Undirected, Integer Weights MST Fredman & Willard (Undirected, Integer Weights MST Minimum Spanning Tree (MST)) 1991 $O(E+V)$ -
Undirected, General MST Pettie, Ramachandran (Undirected, General MST Minimum Spanning Tree (MST)) 2002 unknown but optimal $O(E)$ auxiliary?
Directed (Optimum Branchings), General MST Chu-Liu-Edmonds Algorithm (Directed (Optimum Branchings), General MST Minimum Spanning Tree (MST)) 1965 $O(EV)$ $O(E+V)$
Directed (Optimum Branchings), General MST Tarjan (directed, general) (Directed (Optimum Branchings), General MST Minimum Spanning Tree (MST)) 1987 $O(ElogV)$ $O(E)$
Directed (Optimum Branchings), Super Dense MST Tarjan (directed, dense) (Directed (Optimum Branchings), Super Dense MST Minimum Spanning Tree (MST)) 1987 $O(V^{2})$ $O(E)$
Directed (Optimum Branchings), General MST Gabow, Galil, Spencer (Directed (Optimum Branchings), General MST Minimum Spanning Tree (MST)) 1984 $O(VlogV+Eloglog(logV/log(E/V + {2})$)) $O(E)$
Directed (Optimum Branchings), General MST Gabow et al, Section 3 (Directed (Optimum Branchings), General MST Minimum Spanning Tree (MST)) 1986 $O(E+VlogV)$ $O(E+V)$
k-dimensional space, Euclidean metric Khuller, Matias (k-dimensional space, Euclidean metric Closest Pair Problem) 1995 infinite (can be upper bounded by $O(n^{2})$) $O(n)$
nonnegative integer weights Dial's Algorithm (nonnegative integer weights Shortest Path (Directed graphs)) 1969 $O(E+LV)$ $O(V+L)$
positive integer weights; assumes constant-time multiplication Thorup (positive integer weights; assumes constant-time multiplication Shortest Path (Undirected graphs)) 1999 $O(E)$ $O(E)$
Unweighted Brandes (Unweighted Betweenness Centrality (BC)) 2000 $O(nm)$ $O(n + m)$
Weighted Brandes (Weighted Betweenness Centrality (BC)) 2000 $O(nm + n^{2} \log n)$ $O(n + m)$
Directed, Weighted (Arbitrary weights) Johnson's algorithm (Directed, Weighted (Arbitrary weights) All-Pairs Shortest Paths (APSP)) 1977 $O(V^{2} log V + VE)$ -
Directed, Unweighted Zwick 2002 (Directed, Unweighted All-Pairs Shortest Paths (APSP)) 2002 $O(V^{2.575})$ -
CNF-SAT Davis-Putnam-Logemann-Loveland Algorithm (DPLL) (CNF-SAT Boolean Satisfiability) 1961 $O({2}^n)$ $O(n)$
CNF-SAT Conflict-Driven Clause Learning (CDCL) (CNF-SAT Boolean Satisfiability) 1999 $O({2}^n)$ -
CNF-SAT GSAT (CNF-SAT Boolean Satisfiability) 1992 $O(n*mt*mf)$ $O(n)$
CNF-SAT WalkSAT (CNF-SAT Boolean Satisfiability) 1994 $O(n*mt*mf)$ $O(n)$
CNF-SAT Quantum Adiabatic Algorithm (QAA) (CNF-SAT Boolean Satisfiability) 2001 $O({2}^n)$ $O(poly(n)$)
Renamable Horn Lewis 1978 (Renamable Horn Boolean Satisfiability) 1978 $O(mn^{2})$ -
k-SAT Paturi, Pudlák, Saks, Zane (PPSZ) 2005 (k-SAT Boolean Satisfiability) 2005 O^*({2}^{n-cn/k}) $O(kn)$
3SAT Hertli (Modified PPSZ) (3SAT Boolean Satisfiability) 2014 $O({1.30704}^n)$ $O(kn)$
4SAT Hertli (Modified PPSZ) (4SAT Boolean Satisfiability) 2014 $O({1.46899}^n)$ $O(kn)$
NAE 3SAT Shi 2009 (NAE 3SAT Boolean Satisfiability) 2009 $O({12}m*t_extract + {2}m*t_discard + {2}n*t_append + (n+{2}m)$*t_merge + (n-{1})*t_amplify) $O(n)$ tubes or $O({2}^n)$ library strands
Informed Search Anytime Dynamic A* (ADA*) ( Informed Search) 2005 $O(b^d)$ $O(b^d)$
Informed Search D* Lite ( Informed Search) 2005 $O(b^d)$ $O(b^d)$
Informed Search Focused D* ( Informed Search) 2005 $O(b^d)$ $O(b^d)$
String Search Wu and Manber, Fuzzy String Matching ( String Search) 1992 $O(nk \lceil m/w \rceil)$ $O(ms + k \lceil m/w \rceil)$
Edit distance Wagner-Fischer algorithm (Edit distance Sequence Alignment) 1974 $O(mn)$ $O(m)$
Edit sequence Wagner-Fischer algorithm (Edit sequence Sequence Alignment) 1974 $O(mn)$ $O(mn)$
Edit sequence Masek, Paterson (Edit sequence Sequence Alignment) 1980 $O(mn/log(n)$) $O(mn/log(n)$)
bipartite graph Alt, Blum, Mehlhorn, Paul (bipartite graph Maximum cardinality matching) 1991 $O(V^{1.5}*(E/logV)$^{0.5}) $O(E)$ auxiliary?
general graph Blossom Algorithm (general graph Maximum cardinality matching) 1961 $O(V^{2}E)$ $O(E)$ auxiliary?
general graph Micali, Vazirani (general graph Maximum cardinality matching) 1980 $O(V^{0.5} E)$ $O(E)$ auxiliary?
Minimum value in each row of an implicitly-defined totally monotone matrix Divide and Conquer ( Minimum value in each row of an implicitly-defined totally monotone matrix) 1987 $O(m*log(n)$) $O(log(n)$) auxiliary?
All permutations Wells ( All permutations) 1961 $O({1})$ per permutation $O(n)$ auxiliary
All permutations Langdon ( All permutations) 1967 $O(n)$ per permutation $O({1})$ auxiliary
All permutations Ord-Smith ( All permutations) 1967 $O({1})$ per permutation $O(n)$ auxiliary
All permutations Ives' algorithm c ( All permutations) 1976 $O({1})$ per permutation $O(n)$ auxiliary
All permutations Zaks' prefix reversal algorithm ( All permutations) 1984 $O(n)$ on specific permutations $O(n)$ auxiliary (see NEXT algorithm in same paper)
bipartite (i.e. assignment), general Edmonds-Karp (bipartite (i.e. assignment), general Maximum-weight matching) 1972 $O(n*(SP+))$ where $(SP+)$ denotes the time for one SSSP computation on a nonnegatively weighted graph. Initially $O(n^{3})$ $O(n^{2})$
bipartite (i.e. assignment), general Johnson (Edmonds-Karp-based) (bipartite (i.e. assignment), general Maximum-weight matching) 1975 $O(mn*log(n)$/log({2}+m/n)) $O(n^{2})$
bipartite (i.e. assignment), general Fredman-Tarjan (Edmonds-Karp-based) (bipartite (i.e. assignment), general Maximum-weight matching) 1984 $O(mn+n^{2}log(n)$) $O(n^{2})$
general Gabow (general Maximum-weight matching) 1974 $O(n^{3})$ -
general Galil, Micali, Gabow (general Maximum-weight matching) 1982 $O(mn*log(n)$) -
general Gabow, Galil, Spencer (general Maximum-weight matching) 1989 $O(mn*log(log(log(n)$/log({2}+m/n))) + n^{2}*log(n)) -
general Gabow (general Maximum-weight matching) 1990 $O(mn+n^{2}log(n)$) $O(m)$
General Root Computation Illinois Algorithm (General Root Computation Root Computation) 1971 $O(n_max)$ $O({1})$
General Root Computation Anderson–Björck algorithm (General Root Computation Root Computation) 1973 $O(n_max)$ $O({1})$
General Root Computation ITP Method (General Root Computation Root Computation) 1940? $O(n_0+log((b-a)$/epsilon)) $O({1})$
Root Computation with continuous derivatives (up to d) Householder's Method (Root Computation with continuous derivatives (up to d) Root Computation) 1940(?) $O(d*n_max)$? $O(d)$
General Root Computation Steffensen's method (General Root Computation Root Computation) 1940(?) $O(n_max)$ $O({1})$
General Root Computation Inverse quadratic interpolation (General Root Computation Root Computation) 1940(?) $O(n_max)$ $O({1})$
General Root Computation Brent-Dekker Method (General Root Computation Root Computation) 1973 $O(n_max)$ $O({1})$
Off-Line Lowest Common Ancestor Aho, Hopcroft, and Ullman (Offline) (Off-Line Lowest Common Ancestor Lowest Common Ancestor) 1976 $O(n+ m*alpha(m + n, n)$) where alpha is the inverse Ackermann function $O(n)$
Lowest Common Ancestor with Static Trees Aho, Hopcroft, and Ullman (Static Trees) (Lowest Common Ancestor with Static Trees Lowest Common Ancestor) 1976 $O((m+n)$*log(log(n))) $O(n*log(log(n)$))
Lowest Common Ancestor with Linking Aho, Hopcroft, and Ullman (Linking) (Lowest Common Ancestor with Linking Lowest Common Ancestor) 1976 $O((m+n)$*log(n)) $O(n*log(n)$)
Lowest Common Ancestor with Static Trees Modified van Leeuwen (Static Trees) (Lowest Common Ancestor with Static Trees Lowest Common Ancestor) 1976 $O(n+m*log(log(n)$)) $O(n)$
Lowest Common Ancestor with Linking Roots Modified van Leeuwen (Linking Roots) (Lowest Common Ancestor with Linking Roots Lowest Common Ancestor) 1976 $O(n+m*log(log(n)$)) $O(n)$
Lowest Common Ancestor with Linking Sleator and Tarjan (Linking) (Lowest Common Ancestor with Linking Lowest Common Ancestor) 1983 $O(n+m*log(n)$) $O(n)$
Lowest Common Ancestor with Linking and Cutting Sleator and Tarjan (Linking and Cutting) (Lowest Common Ancestor with Linking and Cutting Lowest Common Ancestor) 1983 $O(n+m*log(n)$) $O(n)$
Lowest Common Ancestor with Static Trees Harel, Tarjan (Static Trees) (Lowest Common Ancestor with Static Trees Lowest Common Ancestor) 1984 $O(n+m)$ $O(n)$
Lowest Common Ancestor with Linking Roots Harel, Tarjan (Linking Roots) (Lowest Common Ancestor with Linking Roots Lowest Common Ancestor) 1984 $O(n+ m*alpha(m + n, n)$) where alpha is the inverse Ackermann function $O(n)$
Lowest Common Ancestor with Static Trees Schieber; Vishkin (Parallel) (Lowest Common Ancestor with Static Trees Lowest Common Ancestor) 1988 $O(m+log(n)$) $O(n)$ total (auxiliary?)
Lowest Common Ancestor with Static Trees Fischer, Heun (Lowest Common Ancestor with Static Trees Lowest Common Ancestor) 2006 $O(m+n)$ $O(n)$
Lowest Common Ancestor with Static Trees Kmett (Lowest Common Ancestor with Static Trees Lowest Common Ancestor) 2015 $O(m*log(h)$) -
Enumerating Maximal Cliques, arbitrary graph Kazuhisa Makino, Takeaki Uno; Section 6 (Enumerating Maximal Cliques, arbitrary graph Clique Problems) 2004 $O(delta^{4})$ $O(n+m)$ auxiliary(?)
Integer 3SUM Textbook Sort-and-Binary-Search (Integer 3SUM 3SUM) - $O(n^{2} log n)$ $O(n)$
Integer 3SUM Textbook Sort-and-Two-Sided-Traversal (Integer 3SUM 3SUM) - $O(n^{2})$ $O(n)$
Integer 3SUM Baran, Demaine, Patrascu (Integer 3SUM 3SUM) 2008 $O(n^{2}/max(w/(log w)$^{2}, (log n)^{2}/(log log n)^{2})) -
Integer 3SUM Baran, Demaine, Patrascu (Integer 3SUM 3SUM) 2008 $O(n^{2}/(w^{2}/(log w)$^{2})) -
Integer 3SUM Baran, Demaine, Patrascu (Integer 3SUM 3SUM) 2008 $O(n^{2}/MB)$ -
Integer 3SUM Baran, Demaine, Patrascu (Integer 3SUM 3SUM) 2008 $O(n^{2}*(log M)$^{2}/MB) -
Real 3SUM Gronlund, Pettie (Real 3SUM 3SUM) 2014 $O(n^{2}/((log n)$/(log log n))^{2}/{3}) -
Real 3SUM Gronlund, Pettie (Real 3SUM 3SUM) 2014 $O(n^{2}*(log log n)$^{2}/(log n)) -
Real 3SUM Freund (Real 3SUM 3SUM) 2017 $O(n^{2}*(log log n)$/(log n)) -
Real 3SUM Chan (Real 3SUM 3SUM) 2018 $O(n^{2}*(log log n)$^{$O({1})$}/(log n)^{2}) -
The Vertex Cover Problem Exhaustive search (The Vertex Cover Problem The Vertex Cover Problem) 1940 $O(C(n, k)$) (i.e. (n, k) binomial coefficient) $O(k)$ auxiliary
The Vertex Cover Problem Downey, Fellows (The Vertex Cover Problem The Vertex Cover Problem) 1995 $O(kn+{2}^k k^{2})$ $O(k^{2})$ auxiliary
The Vertex Cover Problem Papadimitriou and M Yannakakis 1996 + Buss (The Vertex Cover Problem The Vertex Cover Problem) 1996 $O({3}^k k^{2}+kn)$ $O(k^{2})$ auxiliary?
The Vertex Cover Problem Stege, Fellows (The Vertex Cover Problem The Vertex Cover Problem) 1999 $O(kn+max(({1.25542})$^k k^{2}, ({1.2906})^k k) $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??)
The Vertex Cover Problem Stege, Fellows + Interleaving method (Niedermeier, Rossmanith) (The Vertex Cover Problem The Vertex Cover Problem) 2000 $O(kn+({1.2906})$^k) $O(k^{3})$ auxiliary? (potentially $O(k^{2})$??)
1-dimensional Wen (1-dimensional Maximum subarray problem) 1995 $O(log n)$ -
2-dimensional brute force (2-dimensional Maximum subarray problem) 1977 $O(n^{6})$ $O({1})$ auxiliary
2-dimensional Bentley (2-dimensional Maximum subarray problem) 1984 $O(n^{3})$ $O(n^{2})$ auxiliary?
2-dimensional Smith (2-dimensional Maximum subarray problem) 1987 $O(n^{3})$ $O(log n)$ auxiliary?
2-dimensional Tamaki, Tokuyama (exact) (2-dimensional Maximum subarray problem) 1998 $O(n^{3} * ((log log n)$/(log n))^({1}/{2})) -
2-dimensional Tamaki, Tokuyama (approximate) (2-dimensional Maximum subarray problem) 1998 $O(n^(omega)$ * (-log(epsilon))/epsilon) -
2-dimensional Takaoka (2-dimensional Maximum subarray problem) 2002 $O(n^{3} * ((log log n)$/(log n))^({1}/{2})) -
2-dimensional Smith (2-dimensional Maximum subarray problem) 1987 $O(log^{2} n)$ -
2-dimensional KALYAN PERUMALLA and NARSINGH DEO (2-dimensional Maximum subarray problem) 1995 $O(log n)$ -
2-dimensional Wen (2-dimensional Maximum subarray problem) 1995 $O(log n)$ -
Minimum Wiener Connector problem Exhaustive search (Minimum Wiener Connector problem Wiener Index) 2015 {2}^($O(n)$) $O(n)$ auxiliary
k-OV Exhaustive search (k-OV Orthogonal Vectors) - $O(d*n^k)$ $O(k)$ auxiliary
OV Abboud, Williams, Yu (OV Orthogonal Vectors) 2015 $O(n^{({2}-{1}/O(d/log(n)))})$ -
k-OV Reduction to Abboud, Williams, Yu (k-OV Orthogonal Vectors) 2015 $O(n^{(k-{1}/O(d/log(n)))})$ -
OV Chan, Williams (OV Orthogonal Vectors) 2016 $O(n^{({2}-{1}/O(d/log(n)))})$ -
k-OV Reduction to Chan, Williams (k-OV Orthogonal Vectors) 2016 $O(n^{(k-{1}/O(d/log(n)))})$ -
k-Clique Brute force enumeration (k-Clique k-Clique Problem) - $O(n^k)$ $O(k)$ auxiliary
k-Clique Nesetril, Poljak (k-Clique k-Clique Problem) 1985 $O(n^(k-({3}-\omega)*floor(k/{3}))$ where omega is the exponent on matrix multiplication $O(n^({2}k/{3})$) ish
3-Clique APSP algorithm (3-Clique Min-Weight k-Clique Problem) - $O(n^{3} / {2}^(log n)$^{0.5}) -
3-Clique Gronlund, Pettie (3-Clique Exact-Weight k-Clique Problem) 2014 $O(n^{3}*(log log n)$^{2}/(log n)) -
Graph Isomporhism, Trivalent Graphs Babai 1980 (Graph Isomporhism, Trivalent Graphs Graph Isomorphism Problem) 1980 \exp(cn^{\frac{1}{2}} \log n) $O(n^{2})$
Graph Isomorphism, Bounded Vertex Valences Babai 1980 (Graph Isomorphism, Bounded Vertex Valences Graph Isomorphism Problem) 1980 \exp(n^{\frac{1}{2} + $O({1})$}) $O(n^{2})$
Self-Balancing Trees Creation Scapegoat Tree ( Self-Balancing Trees Creation) 1989 $O(nlogn)$ $O(n)$
Self-Balancing Trees Creation Treap ( Self-Balancing Trees Creation) 1989 $O(nlogn)$ $O(n)$
Self-Balancing Trees Creation Tango Tree ( Self-Balancing Trees Creation) 2004 $O(nlogn)$ $O(n)$
Self-Balancing Trees Insertion AVL Tree ( Self-Balancing Trees Insertion) 1962 $O(logn)$ $O({1})$
Self-Balancing Trees Insertion Tarjan Splay Tree ( Self-Balancing Trees Insertion) 1985 $O(n)$ $O({1})$
Self-Balancing Trees Insertion Bayer, McCreight B-Tree ( Self-Balancing Trees Insertion) 1970 $O(b*log(n)$/log(b))? $O(b)$?
Self-Balancing Trees Insertion Scapegoat Tree ( Self-Balancing Trees Insertion) 1989 $O(n)$ $O({1})$?
Self-Balancing Trees Insertion Treap ( Self-Balancing Trees Insertion) 1989 $O(n)$ $O({1})$?
Self-Balancing Trees Deletion AVL Tree ( Self-Balancing Trees Deletion) 1962 $O(logn)$ $O({1})$
Self-Balancing Trees Deletion Tarjan Splay Tree ( Self-Balancing Trees Deletion) 1985 $O(n)$ $O({1})$
Self-Balancing Trees Deletion Bayer, McCreight B-Tree ( Self-Balancing Trees Deletion) 1970 $O(b*log(n)$/log(b))? $O(b)$?
Self-Balancing Trees Deletion Scapegoat Tree ( Self-Balancing Trees Deletion) 1989 $O(n)$ $O({1})$?
Self-Balancing Trees Deletion Treap ( Self-Balancing Trees Deletion) 1989 $O(n)$ $O({1})$?
Self-Balancing Trees Search AVL Tree ( Self-Balancing Trees Search) 1962 $O(logn)$ $O({1})$
Self-Balancing Trees Search Tarjan Splay Tree ( Self-Balancing Trees Search) 1985 $O(n)$ $O({1})$
Self-Balancing Trees Search Bayer, McCreight B-Tree ( Self-Balancing Trees Search) 1970 $O(b*log(n)$/log(b))? $O({1})$
Self-Balancing Trees Search Scapegoat Tree ( Self-Balancing Trees Search) 1989 $O(nlogn)$ $O({1})$?
Self-Balancing Trees Search Treap ( Self-Balancing Trees Search) 1989 $O(n)$ $O({1})$?
Self-Balancing Trees Search Tango Tree ( Self-Balancing Trees Search) 2004 $O((k+{1})$log(log(n))) -
2 player games Lemke-Howson Algorithm (2 player games Nash Equilibria) 1964 Exponential $O(mn)$?
Graphical games, Multi-agent influence diagrams Blum, Shelton, Koller (Graphical games, Multi-agent influence diagrams Nash Equilibria) 2003 Unknown? -
2 player games Lipton, Markakis and Mehta method (2 player games Nash Equilibria) 2003 $O(n^{c log n/eps^2})$ $O(log^{2} n/eps^{2})$
n player games Lipton, Markakis and Mehta method 2 (n player games Nash Equilibria) 2003 $O(n^{ck^{2} log (k^{2}n)$/eps^2}) $O(k^{2}log^{2} n/eps^{2})$
n player games Support enumeration and search (n player games Nash Equilibria) 2004 Unknown -
n player games Mixed Integer Programming (n player games Nash Equilibria) 2005 Unknown -
n player games Global Newton Method (n player games Nash Equilibria) 2008 Unknown -
4NF Decomposition for Functional and Multivalued Dependency Sets Grahne and Räihä (4NF Decomposition for Functional and Multivalued Dependency Sets 4NF Decomposition) 1983 exponential exponential
4NF Decomposition for Conflict-Free Dependency Sets Lien (4NF Decomposition for Conflict-Free Dependency Sets 4NF Decomposition) 1982 $O(k^{2} n^{2})$ $O(k^{2})$
4NF Decomposition for Conflict-Free Dependency Sets Sciore (4NF Decomposition for Conflict-Free Dependency Sets 4NF Decomposition) 1981 poly-time -
4NF Decomposition for Functional and Multivalued Dependency Sets Fagin (4NF Decomposition for Functional and Multivalued Dependency Sets 4NF Decomposition) 1977 exponential exponential