Motif Search (Motif Search)

From Algorithm Wiki
Revision as of 09:11, 28 April 2023 by Admin (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Description

Motif search is the problem of identifying motifs, recurring or conserved patterns, in the strings (typically biological sequence data sets).

Parameters

$n$: size of set of input strings

$m$: size of input strings

$k$: length of substrings

$\sigma$: function $V(k, m)$ defined as the number of $k$-mers that are at most $m$ Hamming distance from the motif space

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Lawrence, Reilly 1990 $O(nm)$ $O(nm)$ Deterministic Time & Space
Lawrence Gibbs Sampling 1993 $O(nm)$ $O(n + m)$ Deterministic Time
MotifSampler 2001 $O(nm)$ $O(n + m)$ Deterministic Time
Speller 1998 $O(mn^{2} \sigma)$ $O(mn^{2}/w)$ Exact Deterministic Time & Space
Mitra 2002 $O(k nm \sigma)$ $O(mnk)$ Exact Deterministic Time & Space
Census 2003 $O(k nm \sigma)$ $O(mnk)$ Exact Deterministic Time & Space
Risotto 2006 $O(mn^{2} \sigma)$ $O(mn^{2})$ Exact Deterministic Time & Space
PMS 2007 $O(nm^{2} \sigma)$ $O(m^{2} n)$ Exact Deterministic Time & Space
Roth AlignACE 1998 $O(nm)$ $O(n + m)$ Deterministic Time
Helden Oligo-Analysis 1998 $O(mn)$ $O(m)$ Exact Deterministic Time
van Helden J; Rios AF; Collado-Vides J 2000 $O(mn)$ $O(m)$ Exact Deterministic Time
Tompa M 1999 $O(mn)$ $O(m^{2})$ Exact Deterministic Time
Sinha S; Tompa M YMF (Yeast Motif Finder) 2000 $O(n^{0.{6}6} m)$ $O(m)$ Exact Deterministic Time
Bailey TL; Elkan C MEME 1995 $O(n^{2}m^{2})$ $O(mn)$ Exact Deterministic Time
Sagot M 1988 $O(n \log(n)$ m^{1.{4}5}) $O(mn^{2}/w)$ Exact Deterministic Time & Space
Liang Cwinnower 2003 $O(nm^{0.5})$ $O(m^{2})$ Exact Deterministic Time
Kingsford 2006 $O(mn)$ $O(m^{2}n^{2})$ Exact Deterministic Time

Time Complexity Graph

Motif Search - Time.png