Motif Search (Motif Search)

From Algorithm Wiki
Jump to navigation Jump to search

Description

Motif search is the problem of identifying motifs, recurring or conserved patterns, in the strings (typically biological sequence data sets).

Parameters

$n$: size of set of input strings

$m$: size of input strings

$k$: length of substrings

$\sigma$: function $V(k, m)$ defined as the number of $k$-mers that are at most $m$ Hamming distance from the motif space

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Lawrence, Reilly 1990 $O(nm)$ $O(nm)$ Deterministic Time & Space
Lawrence Gibbs Sampling 1993 $O(nm)$ $O(n + m)$ Deterministic Time
MotifSampler 2001 $O(nm)$ $O(n + m)$ Deterministic Time
Speller 1998 $O(mn^{2} \sigma)$ $O(mn^{2}/w)$ Exact Deterministic Time & Space
Mitra 2002 $O(k nm \sigma)$ $O(mnk)$ Exact Deterministic Time & Space
Census 2003 $O(k nm \sigma)$ $O(mnk)$ Exact Deterministic Time & Space
Risotto 2006 $O(mn^{2} \sigma)$ $O(mn^{2})$ Exact Deterministic Time & Space
PMS 2007 $O(nm^{2} \sigma)$ $O(m^{2} n)$ Exact Deterministic Time & Space
Roth AlignACE 1998 $O(nm)$ $O(n + m)$ Deterministic Time
Helden Oligo-Analysis 1998 $O(mn)$ $O(m)$ Exact Deterministic Time
van Helden J; Rios AF; Collado-Vides J 2000 $O(mn)$ $O(m)$ Exact Deterministic Time
Tompa M 1999 $O(mn)$ $O(m^{2})$ Exact Deterministic Time
Sinha S; Tompa M YMF (Yeast Motif Finder) 2000 $O(n^{0.{6}6} m)$ $O(m)$ Exact Deterministic Time
Bailey TL; Elkan C MEME 1995 $O(n^{2}m^{2})$ $O(mn)$ Exact Deterministic Time
Sagot M 1988 $O(n \log(n)$ m^{1.{4}5}) $O(mn^{2}/w)$ Exact Deterministic Time & Space
Liang Cwinnower 2003 $O(nm^{0.5})$ $O(m^{2})$ Exact Deterministic Time
Kingsford 2006 $O(mn)$ $O(m^{2}n^{2})$ Exact Deterministic Time

Time Complexity Graph

Motif Search - Time.png