Maximum Local Edge Connectivity (Maximum Flow)
Jump to navigation
Jump to search
Description
Find the pair of nodes with the maximum number of edge-disjoint paths between them
Related Problems
Related: st-Maximum Flow, Integer Maximum Flow, Unweighted Maximum Flow, Non-integer Maximum Flow, Minimum-Cost Flow, All-Pairs Maximum Flow
Parameters
$V$: number of vertices
$E$: number of edges
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Ford & Fulkerson | 1955 | $O(E^{2}U)$ | $O(E)$ | Exact | Deterministic | Time & Space |
Dinitz | 1970 | $O(V^{2}E)$ | $O(E)$ | Exact | Deterministic | Time & Space |
Edmonds & Karp | 1972 | $O(E^{2} \log U)$ | $O(E)$ | Exact | Deterministic | Time & Space |
Karzanov | 1974 | $O(V^{3})$ | $O(V^{2})$ | Exact | Deterministic | Time & Space |
Galil & Naamad | 1980 | $O(VE \log^{2} V)$ | $O(E)$ | Exact | Deterministic | Time & Space |
Dantzig | 1951 | $O(V^{2}EU)$ | $O(VE)$? | Exact | Deterministic | |
Dinitz (with dynamic trees) | 1973 | $O(VE \log U)$ | $O(E)$ | Exact | Deterministic | Time |
Cherkassky | 1977 | $O(V^{2}E^{0.5})$ | $O(E)$ | Exact | Deterministic | Time & Space |
Sleator & Tarjan | 1983 | $O(VE \log V)$ | $O(E)$ | Exact | Deterministic | Time |
Goldberg & Tarjan | 1986 | $O(VE \log (V^{2}/E))$ | $O(E)$ | Exact | Deterministic | Time |
Ahuja & Orlin | 1987 | $O(VE + V^{2} \log U)$ | $O(ELogU)$ | Exact | Deterministic | Time |
Ahuja et al. | 1987 | $O(VELog(V(LogU)$^{0.5} / E)) | Exact | Deterministic | Time | |
MKM Algorithm | 1978 | $O(V^{3})$ | $O(E)$ | Exact | Deterministic | Time & Space |
Galil | 1978 | $O(V^({5}/{3})$E^({2}/{3})) | $O(E)$ | Exact | Deterministic | Time & Space |
Shiloach | 1981 | $O(V^{3}*log(V)$/p) | $O(E)$ | Exact | Parallel | Time |
Gabow | 1985 | $O(VE*logU)$ | $O(E)$ | Exact | Deterministic | Time |
Lee, Sidford | 2014 | $O(E*sqrt(V)$*log^{2}(U)*polylog(E, V, log(U)) | $O(E)$ | Exact | Deterministic | Time |
Madry | 2016 | $O(E^({10}/{7})$U^({1}/{7})polylog(V, E, log U)) | $O(E)$ | Exact | Deterministic | Time |
Kathuria, Liu, Sidford | 2020 | $O(E^({1}+o({1})$)/sqrt(eps)) | $O(E)$ or $O(V^{2})$ ? | 1+eps | Deterministic | Time |
Kathuria, Liu, Sidford | 2020 | $O(E^({4}/{3}+o({1})$)U^({1}/{3})) | $O(E)$ or $O(V^{2})$ ? | Exact | Deterministic | Time |
Brand et al | 2021 | $O((E+V^{1.5})$log(U)polylog(V, E, log U)) | $O(E)$ | Exact | Randomized | Time |
Gao, Liu, Peng | 2021 | $O(E^({3}/{2}-{1}/{328})$*log(U)*polylog(E)) | $O(E)$ | Exact | Deterministic | Time |
Chen et al | 2022 | $O(E^({1}+o({1})$)*log(U)) | $O(E)$ | Exact | Deterministic | Time |
Reductions FROM Problem
Problem | Implication | Year | Citation | Reduction |
---|---|---|---|---|
MAX-CNF-SAT | assume: SETH then: for any $\epsilon > {0}$, in graphs with $n$ nodes and $\tilde{O}(n)$ edges, target cannot be solved in time $O(n^{2-\epsilon})$ |
2018 | https://dl.acm.org/doi/abs/10.1145/3212510 | link |