Coset Enumeration (Coset Enumeration)
Jump to navigation
Jump to search
Description
Coset enumeration programs implement systematic procedures for enumerating the cosets of a subgroup H of finite index in a group G, given a set of defining relations for G and words generating H.
Parameters
$n$: number of generators
$g$: order of group (possibly exponential in $n$)
$k$: number of relations
$c$: maximum number of generators multiplied together in a relation
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Todd–Coxeter algorithm | 1936 | $O({2}^n)$ | $O(gkc)$ | Exact | Deterministic | Time |
Haselgrove-Leech-Trotter (HLT) algorithm | 1940 | $O({2}^n)$ | $O(ng)$? | Exact | Deterministic | |
Knuth–Bendix algorithm | 1970 | $O({1.5}^n n^{2} logn)$ | $O(ng)$??? | Exact | Deterministic | Time |