Reduction from Max-Weight k-Clique to Maximum Subarray

From Algorithm Wiki
Jump to navigation Jump to search

FROM: Max-Weight k-Clique TO: Maximum Subarray

Description

Implications

if: to-time: $O(n^{d+\lfloor d/{2}\rfloor-\epsilon})$ for $d$-dimensional hypercube arrays
then: from-time: $O(n^{k-\epsilon})$ on $n$ vertex graphs for $k=d+\lfloor d/{2}\rfloor$

Year

2016

Reference

Backurs, Arturs, Nishanth Dikkala, and Christos Tzamos. "Tight Hardness Results for Maximum Weight Rectangles}}." 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Vol. 55. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 2016.

https://arxiv.org/pdf/1602.05837.pdf