3SUM' (3SUM)

From Algorithm Wiki
Jump to navigation Jump to search

Description

Given three sets of integers $A, B, C$ of total size $n$, are there $a\in A, b\in B, c\in C$ such that $a + b = c$?

Related Problems

Generalizations: 3SUM

Related: Real 3SUM, All-Integers 3SUM

Parameters

$n$: number of integers in each set

Table of Algorithms

Currently no algorithms in our database for the given problem.

Reductions TO Problem

Problem Implication Year Citation Reduction
3SUM if: to-time $N^{2-\epsilon}$ for some $\epsilon > {0}$
then: from-time: $N^{2-\epsilon'}$ for some $\epsilon' > {0}$
1995 https://doi.org/10.1016/0925-7721(95)00022-2 link
GeomBase if: to-time $N^{2-\epsilon}$ for some $\epsilon > {0}$
then: from-time: $N^{2-\epsilon'}$ for some $\epsilon' > {0}$
1995 https://doi.org/10.1016/0925-7721(95)00022-2 link
Static Dihedral Rotation Queries if: to-time $N^{2-\epsilon}$ for some $\epsilon > {0}$
then: from-time: $N^{2-\epsilon'}$ for some $\epsilon' > {0}$
2003 https://doi.org/10.1016/S0925-7721(02)00156-6 link

Reductions FROM Problem

Problem Implication Year Citation Reduction
3SUM if: to-time $N^{2-\epsilon}$ for some $\epsilon > {0}$
then: from-time: $N^{2-\epsilon'}$ for some $\epsilon' > {0}$
1995 https://doi.org/10.1016/0925-7721(95)00022-2 link
GeomBase if: to-time $N^{2-\epsilon}$ for some $\epsilon > {0}$
then: from-time: $N^{2-\epsilon'}$ for some $\epsilon' > {0}$
1995 https://doi.org/10.1016/0925-7721(95)00022-2 link