3SUM (3SUM)

From Algorithm Wiki
Revision as of 13:06, 15 February 2023 by Admin (talk | contribs)
Jump to navigation Jump to search

Description

Given a set $S$ of integers, determine whether there is a subset of $S$ of size 3 that sums to 0.

Related Problems

Generalizations: Real 3SUM

Subproblem: 3SUM', All-Integers 3SUM

Related: All-Integers 3SUM

Parameters

S: the set of integers

n: the number of integers in the set

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Textbook SortandBinarySearch - $O(n^{2} log n)$ $O(n)$ Exact Deterministic
Textbook SortandTwoSidedTraversal - $O(n^{2})$ $O(n)$ Exact Deterministic
Baran, Demaine, Patrascu 2008 $O(n^{2}/max(w/(log w)$^{2}, (log n)^{2}/(log log n)^{2})) Exact Randomized Time
Baran, Demaine, Patrascu 2008 $O(n^{2}/(w^{2}/(log w)$^{2})) Exact Randomized Time
Baran, Demaine, Patrascu 2008 $O(n^{2}/MB)$ Exact Randomized Time
Baran, Demaine, Patrascu 2008 $O(n^{2}*(log M)$^{2}/MB) Exact Randomized Time
Gronlund, Pettie 2014 $O(n^{2}/((log n)$/(log log n))^{2}/{3}) Exact Deterministic Time
Gronlund, Pettie 2014 $O(n^{2}*(log log n)$^{2}/(log n)) Exact Randomized Time
Freund 2017 $O(n^{2}*(log log n)$/(log n)) Exact Deterministic Time
Chan 2018 $O(n^{2}*(log log n)$^{$O({1})$}/(log n)^{2}) Exact Deterministic Time

Reductions TO Problem

Problem Implication Year Citation Reduction
3SUM' if: to-time $N^{2-\epsilon}$ for some $\epsilon > {0}$
then: from-time: $N^{2-\epsilon'}$ for some $\epsilon' > {0}$
1995 https://doi.org/10.1016/0925-7721(95)00022-2 link
3 Points on Line if: to-time $N^{2-\epsilon}$ for some $\epsilon > {0}$
then: from-time: $N^{2-\epsilon'}$ for some $\epsilon' > {0}$
1995 https://doi.org/10.1016/0925-7721(95)00022-2 link
Local Alignment if: to-time $N^{2-\delta-\epsilon} for two strings of size $n$ and alphabet of size $n^{1-\delta}$ for some $\espilon > {0}$,$\delta \in ({0},{1})$
then: from-time: $n^{2-\epsilon'}$ for some $\epsilon' > {0}$
2014 https://link.springer.com/chapter/10.1007/978-3-662-43948-7_4 link
All-Integers 3SUM if: to-time: $T(n)$
then: from-time: $O(T(n))$
link

Reductions FROM Problem

Problem Implication Year Citation Reduction
3SUM' if: to-time $N^{2-\epsilon}$ for some $\epsilon > {0}$
then: from-time: $N^{2-\epsilon'}$ for some $\epsilon' > {0}$
1995 https://doi.org/10.1016/0925-7721(95)00022-2 link
All-Integers 3SUM if: to-time: $O(n^{2-\epsilon})$ for some $\epsilon > {0}$
then: from-time: $O(n^{1.5} + n^{2-\epsilon / 2})$
2018 https://dl.acm.org/doi/pdf/10.1145/3186893, Theorem 8.1 link

References/Citation

https://link.springer.com/article/10.1007/s00453-007-9036-3