APSP: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:APSP (All-Pairs Shortest Paths (APSP))}} == Description == The shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized. == Related Problems == Subproblem: APSP on Dense Directed Graphs with Arbitrary Weights, APSP on Dense Undirected Graphs with Arbitrary Weights, APSP on Geometrically Weighted Graphs, APSP on Dense Undirec...")
 
No edit summary
Line 12: Line 12:
== Parameters ==  
== Parameters ==  


<pre>n: number of vertices
n: number of vertices
m: number of edges</pre>
 
m: number of edges


== Table of Algorithms ==  
== Table of Algorithms ==  

Revision as of 12:02, 15 February 2023

Description

The shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.

Related Problems

Subproblem: APSP on Dense Directed Graphs with Arbitrary Weights, APSP on Dense Undirected Graphs with Arbitrary Weights, APSP on Geometrically Weighted Graphs, APSP on Dense Undirected Graphs with Positive Integer Weights, APSP on Sparse Directed Graphs with Arbitrary Weights, APSP on Sparse Undirected Graphs with Positive Integer Weights, APSP on Sparse Undirected Graphs with Arbitrary Weights, APSP on Dense Directed Unweighted Graphs, APSP on Dense Undirected Unweighted Graphs, APSP on Sparse Directed Unweighted Graphs, APSP on Sparse Undirected Unweighted Graphs, (5/3)-approximate ap-shortest paths

Related: APSP on Dense Undirected Graphs with Arbitrary Weights, APSP on Geometrically Weighted Graphs, APSP on Dense Undirected Graphs with Positive Integer Weights, APSP on Sparse Directed Graphs with Arbitrary Weights, APSP on Sparse Undirected Graphs with Positive Integer Weights, APSP on Sparse Undirected Graphs with Arbitrary Weights, APSP on Dense Directed Unweighted Graphs, APSP on Dense Undirected Unweighted Graphs, APSP on Sparse Directed Unweighted Graphs, APSP on Sparse Undirected Unweighted Graphs, (5/3)-approximate ap-shortest paths

Parameters

n: number of vertices

m: number of edges

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Floyd–Warshall algorithm 1962 $O(V^{3})$ $O(V^{2})$ Exact Deterministic Time

Time Complexity graph

All-Pairs Shortest Paths (APSP) - APSP - Time.png

Space Complexity graph

All-Pairs Shortest Paths (APSP) - APSP - Space.png

Pareto Decades graph

All-Pairs Shortest Paths (APSP) - APSP - Pareto Frontier.png