3SUM: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:3SUM (3SUM)}} == Description == Given a set $S$ of integers, determine whether there is a subset of $S$ of size 3 that sums to 0. == Related Problems == Generalizations: Real 3SUM Subproblem: 3SUM', All-Integers 3SUM Related: All-Integers 3SUM == Parameters == <pre>S: the set of integers n: the number of integers in the set</pre> == Table of Algorithms == Currently no algorithms in our database for the given problem. == Reduc...")
 
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 14: Line 14:
== Parameters ==  
== Parameters ==  


<pre>S: the set of integers
$S$: the set of integers
n: the number of integers in the set</pre>
 
$n$: the number of integers in the set


== Table of Algorithms ==  
== Table of Algorithms ==  


Currently no algorithms in our database for the given problem.
{| class="wikitable sortable"  style="text-align:center;" width="100%"
 
! Name !! Year !! Time !! Space !! Approximation Factor !! Model !! Reference
 
|-
 
| [[Textbook Sort-and-Binary-Search (Integer 3SUM 3SUM)|Textbook SortandBinarySearch]] || - || $O(n^{2} log n)$ || $O(n)$ || Exact || Deterministic || 
|-
| [[Textbook Sort-and-Two-Sided-Traversal (Integer 3SUM 3SUM)|Textbook SortandTwoSidedTraversal]] || - || $O(n^{2})$ || $O(n)$ || Exact || Deterministic || 
|-
| [[Baran, Demaine, Patrascu (Integer 3SUM 3SUM)|Baran, Demaine, Patrascu]] || 2008 || $O(n^{2}/max(w/(log w)$^{2}, (log n)^{2}/(log log n)^{2})) ||  || Exact || Randomized || [https://link.springer.com/article/10.1007/s00453-007-9036-3 Time]
|-
| [[Baran, Demaine, Patrascu (Integer 3SUM 3SUM)|Baran, Demaine, Patrascu]] || 2008 || $O(n^{2}/(w^{2}/(log w)$^{2})) ||  || Exact || Randomized || [https://link.springer.com/article/10.1007/s00453-007-9036-3 Time]
|-
| [[Baran, Demaine, Patrascu (Integer 3SUM 3SUM)|Baran, Demaine, Patrascu]] || 2008 || $O(n^{2}/MB)$ ||  || Exact || Randomized || [https://link.springer.com/article/10.1007/s00453-007-9036-3 Time]
|-
| [[Baran, Demaine, Patrascu (Integer 3SUM 3SUM)|Baran, Demaine, Patrascu]] || 2008 || $O(n^{2}*(log M)$^{2}/MB) ||  || Exact || Randomized || [https://link.springer.com/article/10.1007/s00453-007-9036-3 Time]
|-
| [[Gronlund, Pettie (Real 3SUM 3SUM)|Gronlund, Pettie]] || 2014 || $O(n^{2}/((log n)$/(log log n))^{2}/{3}) ||  || Exact || Deterministic || [https://ieeexplore.ieee.org/abstract/document/6979047 Time]
|-
| [[Gronlund, Pettie (Real 3SUM 3SUM)|Gronlund, Pettie]] || 2014 || $O(n^{2}*(log log n)$^{2}/(log n)) ||  || Exact || Randomized || [https://ieeexplore.ieee.org/abstract/document/6979047 Time]
|-
| [[Freund (Real 3SUM 3SUM)|Freund]] || 2017 || $O(n^{2}*(log log n)$/(log n)) ||  || Exact || Deterministic || [https://link.springer.com/article/10.1007/s00453-015-0079-6 Time]
|-
| [[Chan (Real 3SUM 3SUM)|Chan]] || 2018 || $O(n^{2}*(log log n)$^{$O({1})$}/(log n)^{2}) ||  || Exact || Deterministic || [https://dl.acm.org/doi/abs/10.1145/3363541 Time]
|-
|}


== Reductions TO Problem ==  
== Reductions TO Problem ==  

Latest revision as of 08:28, 10 April 2023

Description

Given a set $S$ of integers, determine whether there is a subset of $S$ of size 3 that sums to 0.

Related Problems

Generalizations: Real 3SUM

Subproblem: 3SUM', All-Integers 3SUM

Related: All-Integers 3SUM

Parameters

$S$: the set of integers

$n$: the number of integers in the set

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Textbook SortandBinarySearch - $O(n^{2} log n)$ $O(n)$ Exact Deterministic
Textbook SortandTwoSidedTraversal - $O(n^{2})$ $O(n)$ Exact Deterministic
Baran, Demaine, Patrascu 2008 $O(n^{2}/max(w/(log w)$^{2}, (log n)^{2}/(log log n)^{2})) Exact Randomized Time
Baran, Demaine, Patrascu 2008 $O(n^{2}/(w^{2}/(log w)$^{2})) Exact Randomized Time
Baran, Demaine, Patrascu 2008 $O(n^{2}/MB)$ Exact Randomized Time
Baran, Demaine, Patrascu 2008 $O(n^{2}*(log M)$^{2}/MB) Exact Randomized Time
Gronlund, Pettie 2014 $O(n^{2}/((log n)$/(log log n))^{2}/{3}) Exact Deterministic Time
Gronlund, Pettie 2014 $O(n^{2}*(log log n)$^{2}/(log n)) Exact Randomized Time
Freund 2017 $O(n^{2}*(log log n)$/(log n)) Exact Deterministic Time
Chan 2018 $O(n^{2}*(log log n)$^{$O({1})$}/(log n)^{2}) Exact Deterministic Time

Reductions TO Problem

Problem Implication Year Citation Reduction
3SUM' if: to-time $N^{2-\epsilon}$ for some $\epsilon > {0}$
then: from-time: $N^{2-\epsilon'}$ for some $\epsilon' > {0}$
1995 https://doi.org/10.1016/0925-7721(95)00022-2 link
3 Points on Line if: to-time $N^{2-\epsilon}$ for some $\epsilon > {0}$
then: from-time: $N^{2-\epsilon'}$ for some $\epsilon' > {0}$
1995 https://doi.org/10.1016/0925-7721(95)00022-2 link
Local Alignment if: to-time $N^{2-\delta-\epsilon} for two strings of size $n$ and alphabet of size $n^{1-\delta}$ for some $\espilon > {0}$,$\delta \in ({0},{1})$
then: from-time: $n^{2-\epsilon'}$ for some $\epsilon' > {0}$
2014 https://link.springer.com/chapter/10.1007/978-3-662-43948-7_4 link
All-Integers 3SUM if: to-time: $T(n)$
then: from-time: $O(T(n))$
link

Reductions FROM Problem

Problem Implication Year Citation Reduction
3SUM' if: to-time $N^{2-\epsilon}$ for some $\epsilon > {0}$
then: from-time: $N^{2-\epsilon'}$ for some $\epsilon' > {0}$
1995 https://doi.org/10.1016/0925-7721(95)00022-2 link
All-Integers 3SUM if: to-time: $O(n^{2-\epsilon})$ for some $\epsilon > {0}$
then: from-time: $O(n^{1.5} + n^{2-\epsilon / 2})$
2018 https://dl.acm.org/doi/pdf/10.1145/3186893, Theorem 8.1 link

References/Citation

https://link.springer.com/article/10.1007/s00453-007-9036-3