Polynomial Interpolation: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 38: | Line 38: | ||
[[File:Polynomial Interpolation - Space.png|1000px]] | [[File:Polynomial Interpolation - Space.png|1000px]] | ||
== | == Time-Space Tradeoff == | ||
[[File:Polynomial Interpolation - Pareto Frontier.png|1000px]] | [[File:Polynomial Interpolation - Pareto Frontier.png|1000px]] |
Revision as of 14:48, 15 February 2023
Description
Given a finite number of points $x_1, \ldots , x_n$, some real constants $y_1, \ldots , y_n$ and a subspace $V$ of $\Pi^d$, find a polynomial $p \in V$, such that
$p(x_j) = y_j$, $j = 1, ... , n$
Parameters
n: number of points
d: dimension of space
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Gaussian elimination | -150 | $O(n^{3})$ | $O(n^{2})$ | Exact | Deterministic | |
Bjorck | 1970 | $O(n^{2})$ | $O(n)$ | Exact | Deterministic | Time & Space |
Higham | 1988 | $O(n^{2})$ | $O(n)$ | Exact | Deterministic | Time & Space |
Calvetti, Reichel | 1993 | $O(n^{2})$ | $O(n)$? | Exact | Deterministic | Time |