Polynomial Interpolation: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:Polynomial Interpolation (Polynomial Interpolation)}} == Description == Given a finite number of points $x_1, \ldots , x_n$, some real constants $y_1, \ldots , y_n$ and a subspace $V$ of $\Pi^d$, find a polynomial $p \in V$, such that $p(x_j) = y_j$, $j = 1, ... , n$ == Parameters == <pre>n: number of points d: dimension of space</pre> == Table of Algorithms == Currently no algorithms in our database for the given problem. == Time Complexity grap...")
 
No edit summary
Line 8: Line 8:
== Parameters ==  
== Parameters ==  


<pre>n: number of points
n: number of points
d: dimension of space</pre>
 
d: dimension of space


== Table of Algorithms ==  
== Table of Algorithms ==  

Revision as of 12:03, 15 February 2023

Description

Given a finite number of points $x_1, \ldots , x_n$, some real constants $y_1, \ldots , y_n$ and a subspace $V$ of $\Pi^d$, find a polynomial $p \in V$, such that

$p(x_j) = y_j$, $j = 1, ... , n$

Parameters

n: number of points

d: dimension of space

Table of Algorithms

Currently no algorithms in our database for the given problem.

Time Complexity graph

Polynomial Interpolation - Time.png

Space Complexity graph

Polynomial Interpolation - Space.png

Pareto Decades graph

Polynomial Interpolation - Pareto Frontier.png