DAG Realization Problem (Graph Realization Problems)

From Algorithm Wiki
Revision as of 10:24, 15 February 2023 by Admin (talk | contribs) (Created page with "{{DISPLAYTITLE:DAG Realization Problem (Graph Realization Problems)}} == Description == Given a sequence $S := (a_1, b_1), \ldots, (a_n, b_n)$ with $a_i, b_i \in \mathbb{Z}_0^+$, does there exist a directed acyclic graph (DAG) (no parallel arcs allowed) with labeled vertex set $V := \{v_1, \ldots , v_n\}$ such that for all $v_i \in V$ indegree and outdegree of $v_i$ match exactly the given numbers $a_i$ and $b_i$, respectively? == Related Problems == Generalizations...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Description

Given a sequence $S := (a_1, b_1), \ldots, (a_n, b_n)$ with $a_i, b_i \in \mathbb{Z}_0^+$, does there exist a directed acyclic graph (DAG) (no parallel arcs allowed) with labeled vertex set $V := \{v_1, \ldots , v_n\}$ such that for all $v_i \in V$ indegree and outdegree of $v_i$ match exactly the given numbers $a_i$ and $b_i$, respectively?

Related Problems

Generalizations: Digraph Realization Problem

Parameters

$n$: number of degree pairs

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Berger & Müller-Hannemann 2011 $O(\exp(n)$) ? Exact Deterministic Time

Time Complexity graph

Graph Realization Problems - DAG Realization Problem - Time.png

References/Citation

https://link.springer.com/chapter/10.1007/978-3-642-30870-3_29