CFG Parsing (CFG Problems)

From Algorithm Wiki
Revision as of 10:23, 15 February 2023 by Admin (talk | contribs) (Created page with "{{DISPLAYTITLE:CFG Parsing (CFG Problems)}} == Description == Given a grammar $G$ and a string $s$, find the parse structure, or analysis, assigned to the string $s$ by the grammar $G$. == Related Problems == Related: CFG Recognition == Parameters == <pre>n: length of the given string</pre> == Table of Algorithms == {| class="wikitable sortable" style="text-align:center;" width="100%" ! Name !! Year !! Time !! Space !! Approximation Factor !! Model !! Re...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Description

Given a grammar $G$ and a string $s$, find the parse structure, or analysis, assigned to the string $s$ by the grammar $G$.

Related Problems

Related: CFG Recognition

Parameters

n: length of the given string

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Earley parser 1968 $O(n^{3})$ $O(n^{2})$ Exact Deterministic Time & Space
GLR parser 1974 $O(n^{3})$ $O(n^{3})$ Exact Deterministic Time & Space

Time Complexity graph

CFG Problems - CFG Parsing - Time.png

Space Complexity graph

CFG Problems - CFG Parsing - Space.png

Pareto Decades graph

CFG Problems - CFG Parsing - Pareto Frontier.png

Reductions TO Problem

Problem Implication Year Citation Reduction
BMM if: to-time: $O(n^{3-\epsilon})$ for some $\epsilon > {0}$ where $n \times n$ matrix
then: from-time: $O(gn^{3-\epsilon})$ where $g$ is the size of the CFG
1975 https://www.sciencedirect.com/science/article/pii/S0022000075800468 link

Reductions FROM Problem

Problem Implication Year Citation Reduction
BMM if: to-time: $O(gn^{3-\epsilon})$ for some $\epsilon > {0}$ where $g$ is the size of the CFG and $n$ is the size of the string
then: from-time: $O(n^{3-\epsilon/3})$ where $n \times n$ matrix
2002 https://arxiv.org/abs/cs/0112018 link

References/Citation

https://link.springer.com/chapter/10.1007%2F978-3-662-21545-6_18