Maximum Cut (Maximum Cut)

From Algorithm Wiki
Revision as of 13:05, 15 February 2023 by Admin (talk | contribs)
Jump to navigation Jump to search

Description

Given a graph $G=(V, E)$ with edge weights $c_e > 0$ for all $e\in E$, find a cut $\delta(W)$ such that $c(\delta(W)):=\Sigma_{e\in \dela(W)} c_e$ is as large as possible.

Parameters

n: number of vertices

m: number of edges

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Hadlock 1975 $O({2}^V)$ Exact Deterministic
Motwani & Raghavan 1995 $O(V)$? $O(V)$ auxiliary 0.5 Randomized Time
Mitzenmacher & Upfal 2005 $O(VE)$? $O(V)$ auxiliary 0.5 Deterministic Time
Khuller; Raghavachari & Young, "Greedy Methods" 2007 $O(V^{2})$? $O(V)$ auxiliary 0.5 Deterministic Time
Ausiello et al. 2003 $O(V^{3} logE)$ $O(V^{2})$? ~0.878; assuming this is the goemans-williamson algorithm Deterministic Time
Dunning; Gupta & Silberholz 2018 $O(VE)$ Exact Deterministic Time

Time Complexity Graph

Maximum Cut - Time.png