Approximate Diameter (Graph Metrics)

From Algorithm Wiki
Revision as of 10:28, 15 February 2023 by Admin (talk | contribs) (Created page with "{{DISPLAYTITLE:Approximate Diameter (Graph Metrics)}} == Description == Given a graph $G = (V, E)$, approximate the diameter within a given factor. == Related Problems == Generalizations: Diameter Subproblem: Diameter 2 vs 3, Diameter 3 vs 7 Related: Median, Radius, Diameter 3 vs 7, Decremental Diameter, 1-sensitive (4/3)-approximate decremental diameter, 1-sensitive decremental diameter, constant sensitivity (4/3)-approximat...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Description

Given a graph $G = (V, E)$, approximate the diameter within a given factor.

Related Problems

Generalizations: Diameter

Subproblem: Diameter 2 vs 3, Diameter 3 vs 7

Related: Median, Radius, Diameter 3 vs 7, Decremental Diameter, 1-sensitive (4/3)-approximate decremental diameter, 1-sensitive decremental diameter, constant sensitivity (4/3)-approximate incremental diameter, 1-sensitive (4/3)-approximate decremental eccentricity

Parameters

n: number of nodes
m: number of edges

Table of Algorithms

Currently no algorithms in our database for the given problem.

Reductions FROM Problem

Problem Implication Year Citation Reduction
CNF-SAT if: to-time: $O(m^{2-\epsilon})$ for some $\epsilon > {0}$ for a $({3}/{2} - \epsilon)$-approximation
then: from-time: $O*(({2}-\delta)^n)$ for constant $\delta > {0}$
2013 https://people.csail.mit.edu/virgi/diam.pdf link