Discrete Fourier Transform: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 43: Line 43:


[[File:Discrete Fourier Transform - Time.png|1000px]]
[[File:Discrete Fourier Transform - Time.png|1000px]]
== Space Complexity Graph ==
[[File:Discrete Fourier Transform - Space.png|1000px]]
== Time-Space Tradeoff ==
[[File:Discrete Fourier Transform - Pareto Frontier.png|1000px]]

Latest revision as of 09:08, 28 April 2023

Description

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency.

Parameters

$n$: length of the input data set

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Naive algorithm 1965 $O(n^{2})$ $O({1})$ Exact Deterministic
Cooley–Tukey algorithm 1965 $O(n \log n)$ $O(n)$? Exact Deterministic Time
Rader–Brenner algorithm 1976 $O(n \log n)$ $O(n)$? Exact Deterministic Time
Bruun's FFT algorithm 1978 $O(n \log n)$ $O(n)$? Exact Deterministic Time
Yavne Split Radix FFT algorithm 1968 $O(n \log n)$ $O(n)$? Exact Deterministic Time
Gentleman; Morven and Gordon Sande radix-4 algorithm 1966 $O(n \log n)$ $O(n)$? Exact Deterministic Time
Bergland; Glenn radix-8 algorithm 1969 $O(n \log n)$ $O(n)$ Exact Deterministic Time & Space
Extended Split Radix FFT algorithm 2001 $O(n \log n)$ $O(n)$? Exact Deterministic Time
Von zur Gathen-Gerhard additive FFT 1996 $O(n (\log n)$^{2}) $O(n)$ Exact Deterministic Time & Space
Wang-Zhu-Cantor additive FFT 1988 $O(n(\log n)$^{1.{58}5}) $O(n)$? Exact Deterministic Time
Gao’s additive FFT 2010 $O(n logn loglogn)$ $O(n)$ Exact Deterministic Time & Space

Time Complexity Graph

Discrete Fourier Transform - Time.png