Gröbner Bases: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 29: | Line 29: | ||
[[File:Gröbner Bases - Time.png|1000px]] | [[File:Gröbner Bases - Time.png|1000px]] | ||
Latest revision as of 09:07, 28 April 2023
Description
In mathematics, and more specifically in computer algebra, computational algebraic geometry, and computational commutative algebra, a Gröbner basis is a particular kind of generating set of an ideal in a polynomial ring $K(x_1, \ldots ,x_n)$ over a field $K$. As an algorithmic problem, given a set of polynomials in $K(x_1, \ldots,x_n)$, determine a Gröbner basis.
Parameters
$n$: number of variables in each polynomial
$d$: maximal total degree of the polynomials
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Buchberger's algorithm | 1976 | d^{({2}^{(n+o({1})})}) | d^{({2}^{(n+o({1}))})}?? | Exact | Deterministic | Time |
Faugère F4 algorithm | 1999 | $O(C(n+D_{reg}, D_{reg})$^{\omega}) where omega is the exponent on matrix multiplication | $O(C(n+D_{reg}, D_{reg})$^{2})? | Exact | Deterministic | Time |
Faugère F5 algorithm | 2002 | $O(C(n+D_{reg}, D_{reg})$^{\omega}) where omega is the exponent on matrix multiplication | $O(C(n+D_{reg}, D_{reg})$^{2})? | Exact | Deterministic | Time |