Approximate Betweenness Centrality: Difference between revisions
Jump to navigation
Jump to search
(Created page with "{{DISPLAYTITLE:Approximate Betweenness Centrality (Vertex Centrality)}} == Description == Given a graph $G = (V, E)$ and a vertex $v \in V$, approximate the betweenness centrality of vertex $v$ == Related Problems == Generalizations: Betweenness Centrality Related: Eccentricity, All-Nodes Median Parity, Positive Betweenness Centrality, Directed All-Nodes Positive Betweenness Centrality, Undirected All-Nodes Positive Betweenness Centrality, [...") |
No edit summary |
||
Line 12: | Line 12: | ||
== Parameters == | == Parameters == | ||
n: number of nodes | |||
m: number of edges | |||
m: number of edges | |||
== Table of Algorithms == | == Table of Algorithms == |
Revision as of 12:04, 15 February 2023
Description
Given a graph $G = (V, E)$ and a vertex $v \in V$, approximate the betweenness centrality of vertex $v$
Related Problems
Generalizations: Betweenness Centrality
Related: Eccentricity, All-Nodes Median Parity, Positive Betweenness Centrality, Directed All-Nodes Positive Betweenness Centrality, Undirected All-Nodes Positive Betweenness Centrality, Reach Centrality, Directed All-Nodes Reach Centrality, Undirected All-Nodes Reach Centrality, Approximate Reach Centrality
Parameters
n: number of nodes
m: number of edges
Table of Algorithms
Currently no algorithms in our database for the given problem.
Reductions TO Problem
Problem | Implication | Year | Citation | Reduction |
---|---|---|---|---|
Diameter | 2015 | https://epubs.siam.org/doi/10.1137/1.9781611973730.112, Theorem 4.2 | link |
Reductions FROM Problem
Problem | Implication | Year | Citation | Reduction |
---|---|---|---|---|
Diameter | 2015 | https://epubs.siam.org/doi/10.1137/1.9781611973730.112, Theorem 4.2 | link | |
CNF-SAT | if: to-time: $O(m^{2-\epsilon})$ for some $\epsilon > {0}$ then: from-time: $O*({2}^{({1}-\delta)n})$ for some $\delta > {0}$ |
2015 | https://epubs.siam.org/doi/10.1137/1.9781611973730.112, Corollary 4.2 | link |