Undirected All-Nodes Reach Centrality: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 14: Line 14:
== Parameters ==  
== Parameters ==  


n: number of vertices
$n$: number of nodes


m: number of edges
$m$: number of edges


== Table of Algorithms ==  
== Table of Algorithms ==  

Latest revision as of 07:53, 10 April 2023

Description

The reach centrality of a node $w$ is the smallest distance $r$ such that any $s-t$ shortest path passing through $w$ has either $s$ or $t$ in the ball of radius $r$ around $w$.

Undirected All-Nodes Reach Centrality is the version of the problem in an undirected graph where you must calculate the reach centrality of each node.

Related Problems

Generalizations: Reach Centrality

Related: Eccentricity, All-Nodes Median Parity, Betweenness Centrality, Approximate Betweenness Centrality, Positive Betweenness Centrality, Directed All-Nodes Positive Betweenness Centrality, Undirected All-Nodes Positive Betweenness Centrality, Directed All-Nodes Reach Centrality, Approximate Reach Centrality

Parameters

$n$: number of nodes

$m$: number of edges

Table of Algorithms

Currently no algorithms in our database for the given problem.

Reductions FROM Problem

Problem Implication Year Citation Reduction
Undirected, Weighted APSP if: to-time: Truly subcubic
then: from-time: Truly subcubic
2015 https://epubs.siam.org/doi/10.1137/1.9781611973730.112, Corollary 4.1 link