Longest Palindromic Substring: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 28: | Line 28: | ||
|} | |} | ||
== Time Complexity | == Time Complexity Graph == | ||
[[File:Longest Palindromic Substring - Time.png|1000px]] | [[File:Longest Palindromic Substring - Time.png|1000px]] | ||
== Space Complexity | == Space Complexity Graph == | ||
[[File:Longest Palindromic Substring - Space.png|1000px]] | [[File:Longest Palindromic Substring - Space.png|1000px]] | ||
== Pareto | == Pareto Frontier Improvements Graph == | ||
[[File:Longest Palindromic Substring - Pareto Frontier.png|1000px]] | [[File:Longest Palindromic Substring - Pareto Frontier.png|1000px]] |
Revision as of 13:04, 15 February 2023
Description
Given a string of length $n$, find the palindromic substrings of maximal length.
Parameters
n: length of given string
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Naive | 1940 | $O(n^{3})$ | $O({1})$ auxiliary | Exact | Deterministic | Space |
Dynamic Programming | 1953 | $O(n^{2})$ | $O(n^{2})$ | Exact | Deterministic | Space |
Manacher | 1975 | $O(n)$ | $O(n)$ auxiliary | Exact | Deterministic | Time |
Jeuring | 1994 | $O(n)$ | $O(n)$ auxiliary? | Exact | Deterministic | Time |
Gusfield | 1997 | $O(n)$ | $O(n)$ auxiliary | Exact | Deterministic | Time |