Min-Weight k-Clique: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:Min-Weight k-Clique (Clique Problems)}} == Description == Given a graph $G = (V, E)$, find the $k$-clique of minimum weight. == Related Problems == Generalizations: k-Clique Related: Enumerating Maximal Cliques, arbitrary graph, Exact k-Clique, Max-Weight k-Clique == Parameters == <pre>n: number of vertices k: size of clique</pre> == Table of Algorithms == Currently no algorithms in our database for the given problem. == Reduct...")
 
No edit summary
Line 12: Line 12:
== Parameters ==  
== Parameters ==  


<pre>n: number of vertices
n: number of vertices
k: size of clique</pre>
 
k: size of clique


== Table of Algorithms ==  
== Table of Algorithms ==  

Revision as of 12:02, 15 February 2023

Description

Given a graph $G = (V, E)$, find the $k$-clique of minimum weight.

Related Problems

Generalizations: k-Clique

Related: Enumerating Maximal Cliques, arbitrary graph, Exact k-Clique, Max-Weight k-Clique

Parameters

n: number of vertices

k: size of clique

Table of Algorithms

Currently no algorithms in our database for the given problem.

Reductions TO Problem

Problem Implication Year Citation Reduction
Minimum Weight k-Cycle if: to-time: $O(nm^{\lceil k/{2} \rceil / \lambda - \epsilon})$ for any $\epsilon > {0}$ for $m = \Theta(n^{1+{1}/(\lambda - {1})}) edges and $n$ nodes where $\lambda = k - \lceil k/{2} \rceil + {1}$
then: from-time: $O(n^{k - \epsilon})$ for some $\epsilon > {0}$
2018 https://arxiv.org/pdf/1712.08147v2.pdf, Corollary 4.2 link