Square Matrix LU Decomposition: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:Square Matrix LU Decomposition (LU Decomposition)}} == Description == Lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix. In this specific case, the input is a square $n \times n$ matrix == Related Problems == Generalizations: Rectangular Matrix LU Decomposition == Parameters == <pre>$n$: dimension of square matrix</pre> == Table of Algorithms == {| cl...")
 
No edit summary
Line 10: Line 10:
== Parameters ==  
== Parameters ==  


<pre>$n$: dimension of square matrix</pre>
$n$: dimension of square matrix


== Table of Algorithms ==  
== Table of Algorithms ==  

Revision as of 12:02, 15 February 2023

Description

Lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix. In this specific case, the input is a square $n \times n$ matrix

Related Problems

Generalizations: Rectangular Matrix LU Decomposition

Parameters

$n$: dimension of square matrix

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Doolittle Algorithm 1878 $O(n^{3})$ $\tilde{O}({1})$ Exact Deterministic
Crout and LUP algorithms 2007 $O(n^{3})$ $\tilde{O}({1})$ Exact Deterministic Time
Okunev; Johnson 1997 $O(n^{3})$ $O({1})$ Exact Deterministic Time
Bunch; Hopcroft 1974 $O(n^{2.{37}6})$ $\tilde{O}(n^{2})$ Exact Deterministic Time
Closed formula 1975 $O(nlogn)$ Exact Deterministic
David 2006 $O(nlogn)$ Exact Deterministic
Press, Teukolsky, Flannery 2007 $O(n^{3})$ $\tilde{O}(n)$ Exact Deterministic Time

Time Complexity graph

LU Decomposition - Square Matrix LU Decomposition - Time.png

Space Complexity graph

LU Decomposition - Square Matrix LU Decomposition - Space.png

Pareto Decades graph

LU Decomposition - Square Matrix LU Decomposition - Pareto Frontier.png