Lossy Compression: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 51: | Line 51: | ||
[[File:Data Compression - Lossy Compression - Time.png|1000px]] | [[File:Data Compression - Lossy Compression - Time.png|1000px]] | ||
Latest revision as of 09:09, 28 April 2023
Description
The reduction or ideally elimination of redundancies in the original data to result in smaller required storage space is the goal of every compression scheme. There are two categories of data compression: lossy and lossless.
Lossy compression is achieved by only discarding the redundancies and out of human perception information and getting rid of those extra bits.
Related Problems
Related: Lossless Compression
Parameters
$n$: number of items in input series of data
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Gupta; Verdu | 2009 | $O(n^{2} log^{3} n)$ | $O(n)$ | Exact | Deterministic | Time |
Discrete Cosine Transform | 1974 | $O(n^{2})$ | $O(n)$ | Exact | Deterministic | Time |
Maneva and M. J. Wainwright | 2005 | $O(n^{2})$ | $O(n^{2})$ | Exact | Deterministic | Time |
Ciliberti; Mézard | 2005 | $O(n^{2})$ | $O(n^{2})$? | Exact | Deterministic | Time |
Brute force | 1940 | $O(n*{2}^n)$ | $O(n*{2}^n)$? | Exact | Deterministic | |
Matsunaga; Yamamoto | 2003 | $O(n*{2}^n)$ | exp(n) | Exact | Deterministic | Time & Space |
Sun; M. Shao; J. Chen; K. Wong; and X. Wu | 2010 | $O(kmn)$? | $O(kmn)$? | Exact | Deterministic | Time |
Miyake | 2006 | $O(n*{2}^n)$ | $O({2}^n)$ | Exact | Deterministic | Time |
Martinian and M. J. Wainwright | 2006 | $O(n*{2}^n)$ | $O(mn+mk)$? | Exact | Deterministic | Time |
Jalali and T. Weissman | 2008 | $O(n)$ | $O(n)$? | Exact | Deterministic | Time |
Jalali; A. Montanari; and T. Weissman | 2010 | $O(n)$ | $O(n)$? | Exact | Deterministic | Time |
Korada and R. Urbanke; | 2010 | $O(n*{2}^n)$ | $O(N)$ | Exact | Deterministic | Time |