Hyperbolic Spline Interpolation: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 6: Line 6:
== Parameters ==  
== Parameters ==  


No parameters found.
$n$: number of points


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 16: Line 16:
|-
|-


| [[Kvasov 2006 (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation)|Kvasov 2006]] || 2008 || $O(n^{3} log^{2}K)$ || || Exact || Deterministic || [https://link.springer.com/article/10.1134/S0965542508040039 Time]
| [[B.I. Kvasov (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation)|B.I. Kvasov]] || 2008 || $O(n^{3} \log^{2}K)$ || $O(n)$? || Exact || Deterministic || [https://link.springer.com/article/10.1134/S0965542508040039 Time]
|-
|-
| [[V. A. Lyul’ka and A. V. Romanenko 1994 (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation)|V. A. Lyul’ka and A. V. Romanenko]] || 1994 || $O(n^{5})$ ||  || Exact || Deterministic || [https://www.mathnet.ru/eng/zvmmf2544 Time]
| [[V. A. Lyul’ka and A. V. Romanenko (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation)|V. A. Lyul’ka and A. V. Romanenko]] || 1994 || $O(n^{5})$ ||  || Exact || Deterministic || [https://www.mathnet.ru/eng/zvmmf2544 Time]
|-
|-
| [[V. A. Lyul’ka and I. E. Mikhailov 2003 (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation)|V. A. Lyul’ka and I. E. Mikhailov]] || 2003 || $O(n^{4})$ ||  || Exact || Deterministic || [http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=zvmmf&paperid=943&option_lang=eng Time]
| [[V. A. Lyul’ka and I. E. Mikhailov (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation)|V. A. Lyul’ka and I. E. Mikhailov]] || 2003 || $O(n^{4})$ ||  || Exact || Deterministic || [http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=zvmmf&paperid=943&option_lang=eng Time]
|-
|-
| [[V. I. Paasonen 1968 (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation)|V. I. Paasonen]] || 1968 || $O(n^{5} logK)$ ||  || Exact || Deterministic ||   
| [[V. I. Paasonen (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation)|V. I. Paasonen]] || 1968 || $O(n^{5} \log K)$ ||  || Exact || Deterministic ||   
|-
|-
| [[P. Costantini; B. I. Kvasov; and C. Manni 1999 (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation)|P. Costantini; B. I. Kvasov; and C. Manni]] || 1999 || $O(n^{5} logK)$ || $O(n)$? || Exact || Deterministic || [https://link.springer.com/article/10.1023/A:1018988312596 Time]
| [[P. Costantini, B. I. Kvasov, and C. Manni (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation)|P. Costantini, B. I. Kvasov, and C. Manni]] || 1999 || $O(n^{5} \log K)$ || $O(n)$? || Exact || Deterministic || [https://link.springer.com/article/10.1023/A:1018988312596 Time]
|-
|-
| [[B. I. Kvasov 2000 (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation)|B. I. Kvasov]] || 2000 || $O(n^{4})$ || || Exact || Deterministic ||
| [[B. I. Kvasov (Hyperbolic Spline Interpolation Hyperbolic Spline Interpolation)|B. I. Kvasov]] || 2000 || $O(n^{4})$ || $O(n)$?? || Exact || Deterministic || [http://sutir.sut.ac.th:8080/sutir/bitstream/123456789/431/1/bib115.pdf Time]
|-
|-
|}
|}
Line 33: Line 33:


[[File:Hyperbolic Spline Interpolation - Time.png|1000px]]
[[File:Hyperbolic Spline Interpolation - Time.png|1000px]]
== Space Complexity Graph ==
[[File:Hyperbolic Spline Interpolation - Space.png|1000px]]
== Pareto Frontier Improvements Graph ==
[[File:Hyperbolic Spline Interpolation - Pareto Frontier.png|1000px]]

Latest revision as of 09:10, 28 April 2023

Description

The problem of restoring complex curves and surfaces from discrete data so that their shape is preserved is called isogeometric interpolation. A very popular tool for solving this problem are hyperbolic splines in tension, which were introduced in 1966 by Schweikert. These splines have smoothness sufficient for many applications; combined with algorithms for the automatic selection of the tension parameters, they adapt well to the given data. Unfortunately, the evaluation of hyperbolic splines is a very difficult problem because of roundoff errors (for small values of the tension parameters) and overflows (for large values of these parameters).�

Parameters

$n$: number of points

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
B.I. Kvasov 2008 $O(n^{3} \log^{2}K)$ $O(n)$? Exact Deterministic Time
V. A. Lyul’ka and A. V. Romanenko 1994 $O(n^{5})$ Exact Deterministic Time
V. A. Lyul’ka and I. E. Mikhailov 2003 $O(n^{4})$ Exact Deterministic Time
V. I. Paasonen 1968 $O(n^{5} \log K)$ Exact Deterministic
P. Costantini, B. I. Kvasov, and C. Manni 1999 $O(n^{5} \log K)$ $O(n)$? Exact Deterministic Time
B. I. Kvasov 2000 $O(n^{4})$ $O(n)$?? Exact Deterministic Time

Time Complexity Graph

Hyperbolic Spline Interpolation - Time.png