3SAT: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 14: Line 14:
== Parameters ==  
== Parameters ==  


n: number of variables
$n$: number of variables


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 25: Line 25:


| [[Hertli (Modified PPSZ) (3SAT Boolean Satisfiability)|Hertli (Modified PPSZ)]] || 2014 || $O({1.30704}^n)$ || $O(kn)$ || Exact || Randomized || [https://epubs.siam.org/doi/abs/10.1137/120868177 Time]
| [[Hertli (Modified PPSZ) (3SAT Boolean Satisfiability)|Hertli (Modified PPSZ)]] || 2014 || $O({1.30704}^n)$ || $O(kn)$ || Exact || Randomized || [https://epubs.siam.org/doi/abs/10.1137/120868177 Time]
|-
| [[Shi 2009 (NAE 3SAT Boolean Satisfiability)|Shi]] || 2009 || $O({12}m*t_extract + {2}m*t_discard + {2}n*t_append + (n+{2}m)$*t_merge + (n-{1})*t_amplify) || $O(n)$ tubes or $O({2}^n)$ library strands || Exact || Deterministic || [https://ieeexplore.ieee.org/abstract/document/5211463 Time] & [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5211463 Space]
|-
|-
|}
|}

Latest revision as of 07:53, 10 April 2023

Description

3SAT restricts the boolean formula to CNF with (at most) 3 literals per clause

Related Problems

Generalizations: k-SAT

Subproblem: 1-in-3SAT, Not-All-Equal 3-SAT (NAE 3SAT), 3SAT-5, Monotone 3SAT

Related: SAT, Conjunctive Normal Form SAT, Disjunctive Normal Form SAT, Monotone 1-in-3SAT, Monotone Not-Exactly-1-in-3SAT, All-Equal-SAT, Not-All-Equal 3-SAT (NAE 3SAT), Monotone Not-All-Equal 3-SAT (Monotone NAE 3SAT), 2SAT, 3SAT-5, 4SAT, Monotone 3SAT, XOR-SAT, Horn SAT, Dual-Horn SAT, Renamable Horn, MaxSAT

Parameters

$n$: number of variables

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Hertli (Modified PPSZ) 2014 $O({1.30704}^n)$ $O(kn)$ Exact Randomized Time
Shi 2009 $O({12}m*t_extract + {2}m*t_discard + {2}n*t_append + (n+{2}m)$*t_merge + (n-{1})*t_amplify) $O(n)$ tubes or $O({2}^n)$ library strands Exact Deterministic Time & Space