4-Graph Coloring: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:4-Graph Coloring (Graph Coloring)}} == Description == In this case, we wish to determine whether or not a graph is 4-colorable. == Related Problems == Generalizations: k-Graph Coloring Related: Chromatic Number, 2-Graph Coloring, 3-Graph Coloring, 5-Graph Coloring, #k-Graph Coloring, #2-Graph Coloring, #3-Graph Coloring, #4-Graph Coloring, #5-Graph Coloring == Parameters == <pre>n: number of vertices m: numb...")
 
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 12: Line 12:
== Parameters ==  
== Parameters ==  


<pre>n: number of vertices
$n$: number of vertices
m: number of edges</pre>
 
$m$: number of edges


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 24: Line 25:


| [[Brute force (4-Graph Coloring Graph Coloring)|Brute force]] || 1852 || $O((m+n)*{4}^n)$ || $O(n)$ auxiliary || Exact || Deterministic ||   
| [[Brute force (4-Graph Coloring Graph Coloring)|Brute force]] || 1852 || $O((m+n)*{4}^n)$ || $O(n)$ auxiliary || Exact || Deterministic ||   
|-
| [[Karger, Blum ( Graph Coloring)|Karger, Blum]] || 1997 || $O(poly(V))$ ||  || $\tilde{O}(n^{3/14})$ || Deterministic || [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.4204 Time]
|-
|-
| [[Fomin; Gaspers & Saurabh (4-Graph Coloring Graph Coloring)|Fomin; Gaspers & Saurabh]] || 2007 || $O({1.7272}^n)$ || $O(n)$ || Exact || Deterministic || [https://link.springer.com/chapter/10.1007/978-3-540-73545-8_9 Time]
| [[Fomin; Gaspers & Saurabh (4-Graph Coloring Graph Coloring)|Fomin; Gaspers & Saurabh]] || 2007 || $O({1.7272}^n)$ || $O(n)$ || Exact || Deterministic || [https://link.springer.com/chapter/10.1007/978-3-540-73545-8_9 Time]
|-
|-
| [[Lawler (4-Graph Coloring Graph Coloring)|Lawler]] || 1976 || $O((m + n)*{2}^n)$ || $O(n+m)$ || Exact || Deterministic || [https://www.sciencedirect.com/science/article/pii/002001907690065X?via%3Dihub Time]
| [[Lawler (4-Graph Coloring Graph Coloring)|Lawler]] || 1976 || $O((m + n)*{2}^n)$ || $O(n)$ || Exact || Deterministic || [https://www.sciencedirect.com/science/article/pii/002001907690065X?via%3Dihub Time]
|-
|-
| [[Byskov (4-Graph Coloring Graph Coloring)|Byskov]] || 2004 || $O({1.7504}^n)$ || $O(n^{2})$? || Exact || Deterministic || [https://www.sciencedirect.com/science/article/abs/pii/S0167637704000409?via%3Dihub Time]
| [[Byskov (4-Graph Coloring Graph Coloring)|Byskov]] || 2004 || $O({1.7504}^n)$ || $O(n^{2})$? || Exact || Deterministic || [https://www.sciencedirect.com/science/article/abs/pii/S0167637704000409?via%3Dihub Time]
Line 35: Line 34:
|}
|}


== Time Complexity graph ==  
== Time Complexity Graph ==  


[[File:Graph Coloring - 4-Graph Coloring - Time.png|1000px]]
[[File:Graph Coloring - 4-Graph Coloring - Time.png|1000px]]
== Space Complexity graph ==
[[File:Graph Coloring - 4-Graph Coloring - Space.png|1000px]]
== Pareto Decades graph ==
[[File:Graph Coloring - 4-Graph Coloring - Pareto Frontier.png|1000px]]


== References/Citation ==  
== References/Citation ==  


https://link.springer.com/chapter/10.1007/978-3-540-73545-8_9
https://link.springer.com/chapter/10.1007/978-3-540-73545-8_9

Latest revision as of 09:12, 28 April 2023

Description

In this case, we wish to determine whether or not a graph is 4-colorable.

Related Problems

Generalizations: k-Graph Coloring

Related: Chromatic Number, 2-Graph Coloring, 3-Graph Coloring, 5-Graph Coloring, #k-Graph Coloring, #2-Graph Coloring, #3-Graph Coloring, #4-Graph Coloring, #5-Graph Coloring

Parameters

$n$: number of vertices

$m$: number of edges

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Brute force 1852 $O((m+n)*{4}^n)$ $O(n)$ auxiliary Exact Deterministic
Fomin; Gaspers & Saurabh 2007 $O({1.7272}^n)$ $O(n)$ Exact Deterministic Time
Lawler 1976 $O((m + n)*{2}^n)$ $O(n)$ Exact Deterministic Time
Byskov 2004 $O({1.7504}^n)$ $O(n^{2})$? Exact Deterministic Time

Time Complexity Graph

Graph Coloring - 4-Graph Coloring - Time.png

References/Citation

https://link.springer.com/chapter/10.1007/978-3-540-73545-8_9