3-Graph Coloring: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 12: Line 12:
== Parameters ==  
== Parameters ==  


n: number of vertices
$n$: number of vertices


m: number of edges
$m$: number of edges


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 24: Line 24:
|-
|-


| [[Brute-force search (3-Graph Coloring Graph Coloring)|Brute-force search]] || 1852 || $O((n+m)*{3}^n)$ || $O(n)$ auxiliary || Exact || Deterministic ||   
| [[Brute-force search (3-Graph Coloring Graph Coloring)|Brute-force search]] || 1852 || $O((m+n)*{3}^n)$ || $O(n)$ auxiliary || Exact || Deterministic ||   
|-
|-
| [[Karger, Blum ( Graph Coloring)|Karger, Blum]] || 1997 || $O(poly(V))$ ||  || $\tilde{O}(n^{3/14})$ || Deterministic || [http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.4204 Time]
| [[Brélaz (DSatur) (3-Graph Coloring Graph Coloring)|Brélaz (DSatur)]] || 1979 || $O(n^{2})$ || $O(m+n)$ || Exact || Deterministic || [https://dl.acm.org/doi/10.1145/359094.359101 Time]
|-
|-
| [[Brélaz (DSatur) (3-Graph Coloring Graph Coloring)|Brélaz (DSatur)]] || 1979 || $O(V^{2})$ || $O(V + E)$ || Exact || Deterministic || [https://dl.acm.org/doi/10.1145/359094.359101 Time]
| [[Petford and Welsh (3-Graph Coloring Graph Coloring)|Petford and Welsh]] || 1989 || $O(n \log n)$ || $O(n)$ || Exact || Randomized || [https://www.sciencedirect.com/science/article/pii/0012365X89902148 Time]
|-
|-
| [[Petford and Welsh (3-Graph Coloring Graph Coloring)|Petford and Welsh]] || 1989 || $O(nlogn)$ || $O(n)$ || Exact || Randomized || [https://www.sciencedirect.com/science/article/pii/0012365X89902148 Time]
| [[Lawler (3-Graph Coloring Graph Coloring)|Lawler]] || 1976 || $O(m*n*{3}^{(n/{3})}) ~ O(mn({1.445})^n)$ || $O(n)$ || Exact || Deterministic || [https://www.sciencedirect.com/science/article/pii/002001907690065X?via%3Dihub Time]
|-
| [[Lawler (3-Graph Coloring Graph Coloring)|Lawler]] || 1976 || $O(m*n*{3}^{(n/{3})}) ~ O(mn({1.445})^n)$ || $O(n+m)$ || Exact || Deterministic || [https://www.sciencedirect.com/science/article/pii/002001907690065X?via%3Dihub Time]
|-
|-
| [[Schiermeyer (3-Graph Coloring Graph Coloring)|Schiermeyer]] || 1994 || $O({1.415}^n)$ || $O(nm+n^{2})$ loose bound, possibly $O(n+m)$? || Exact || Deterministic || [https://link.springer.com/chapter/10.1007/3-540-57899-4_51 Time]
| [[Schiermeyer (3-Graph Coloring Graph Coloring)|Schiermeyer]] || 1994 || $O({1.415}^n)$ || $O(nm+n^{2})$ loose bound, possibly $O(n+m)$? || Exact || Deterministic || [https://link.springer.com/chapter/10.1007/3-540-57899-4_51 Time]
Line 52: Line 50:
|}
|}


== Time Complexity graph ==  
== Time Complexity Graph ==  


[[File:Graph Coloring - 3-Graph Coloring - Time.png|1000px]]
[[File:Graph Coloring - 3-Graph Coloring - Time.png|1000px]]
== Space Complexity graph ==
[[File:Graph Coloring - 3-Graph Coloring - Space.png|1000px]]
== Pareto Decades graph ==
[[File:Graph Coloring - 3-Graph Coloring - Pareto Frontier.png|1000px]]


== References/Citation ==  
== References/Citation ==  


https://www.sciencedirect.com/science/article/pii/S0196677404001117?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0196677404001117?via%3Dihub

Latest revision as of 09:12, 28 April 2023

Description

In this case, we wish to determine whether or not a graph is 3-colorable.

Related Problems

Generalizations: k-Graph Coloring

Related: Chromatic Number, 2-Graph Coloring, 4-Graph Coloring, 5-Graph Coloring, #k-Graph Coloring, #2-Graph Coloring, #3-Graph Coloring, #4-Graph Coloring, #5-Graph Coloring

Parameters

$n$: number of vertices

$m$: number of edges

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Brute-force search 1852 $O((m+n)*{3}^n)$ $O(n)$ auxiliary Exact Deterministic
Brélaz (DSatur) 1979 $O(n^{2})$ $O(m+n)$ Exact Deterministic Time
Petford and Welsh 1989 $O(n \log n)$ $O(n)$ Exact Randomized Time
Lawler 1976 $O(m*n*{3}^{(n/{3})}) ~ O(mn({1.445})^n)$ $O(n)$ Exact Deterministic Time
Schiermeyer 1994 $O({1.415}^n)$ $O(nm+n^{2})$ loose bound, possibly $O(n+m)$? Exact Deterministic Time
Beigel & Eppstein 1995 $O({1.3446}^n)$ $O(n^{2})$? Exact Deterministic Time
Beigel & Eppstein 2000 $O({1.3289}^n)$ $O(n^{2})$? Exact Deterministic Time
Robson 1986 $O({1.2108}^n)$ Exact Deterministic Time
Schöning 1999 $O({1.333}^n)$ Exact Randomized Time
Hirsch 1998 $O({1.239}^n)$ Exact Deterministic Time
Johnson 1988 $O({1.4422}^n)$ Exact Deterministic Time
Alon and Kahale 1997 $O({1.24}^n)$ Exact Deterministic Time

Time Complexity Graph

Graph Coloring - 3-Graph Coloring - Time.png

References/Citation

https://www.sciencedirect.com/science/article/pii/S0196677404001117?via%3Dihub