Delaunay Triangulation: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 8: Line 8:
== Parameters ==  
== Parameters ==  


n: number of points
$n$: number of points


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 18: Line 18:
|-
|-


| [[ Katajainen and M. Koppinen ( Delaunay Triangulation)| Katajainen and M. Koppinen]] || 1987 || $O(n log log n)$ ||  || Exact || Deterministic || [https://www.semanticscholar.org/paper/Constructing-Delaunay-triangulations-by-merging-in-Katajainen-Koppinen/b13059c096f37407ea680fec0e61e000f6407292 Time]
| [[Fortune ( Delaunay Triangulation)|Fortune]] || 1987 || $O(n \log n)$ || $O(n)$ || Exact || Deterministic || [http://www.wias-berlin.de/people/si/course/files/Fortune87-SweepLine-Voronoi.pdf Time]
|-
| [[Naive algorithm (2-Dimensional Delaunay Triangulation Delaunay Triangulation)|Naive algorithm]] || 1934 || $O(n^{4})$? (previously $O(n^{2})$) || $O(n)$ || Exact || Deterministic || 
|-
| [[Flipping algorithm (2-Dimensional Delaunay Triangulation Delaunay Triangulation)|Flipping algorithm]] || 1999 || $O(n^{2})$ || $O(n)$ || Exact || Deterministic || [https://link.springer.com/article/10.1007/PL00009464 Time]
|-
| [[de Berg; Cheong (2-Dimensional Delaunay Triangulation Delaunay Triangulation)|de Berg; Cheong]] || 2008 || $O(n \log n)$ || $O(n)$ || Exact || Deterministic || [https://web.archive.org/web/20091028054315/http://www.cs.uu.nl/geobook/interpolation.pdf Time]
|-
| [[Bowyer–Watson algorithm (2-Dimensional Delaunay Triangulation Delaunay Triangulation)|Bowyer–Watson algorithm]] || 1981 || $O(n \log n)$ || $O(n)$ || Exact || Deterministic || [https://academic.oup.com/comjnl/article/24/2/167/338200 Time]
|-
| [[Belloch (2-Dimensional Delaunay Triangulation Delaunay Triangulation)|Belloch]] || 2006 || $O(n \log n)$ || $O(n)$ || Exact || Parallel || [https://web.archive.org/web/20180425231851/https://www.cs.cmu.edu/~ygu1/paper/SPAA16/Incremental.pdf Time]
|-
| [[Guibas; Stofli (2-Dimensional Delaunay Triangulation Delaunay Triangulation)|Guibas; Stofli]] || 1985 || $O(n \log n)$ || $O(n)$ || Exact || Deterministic || [http://www.geom.uiuc.edu/~samuelp/del_project.html Time]
|-
| [[Fortune (2-Dimensional Delaunay Triangulation Delaunay Triangulation)|Fortune]] || 1992 || $O(n^{2})$ || $O(n)$ || Exact || Deterministic || [https://dl.acm.org/doi/10.1145/142675.142695 Time]
|-
| [[S-hull (Sinclair) (2-Dimensional Delaunay Triangulation Delaunay Triangulation)|S-hull (Sinclair)]] || 2010 || $O(n \log n)$ || $O(n)$ || Exact || Deterministic || [http://www.s-hull.org/paper/s_hull.pdf Time]
|-
| [[Dwyer (2-Dimensional Delaunay Triangulation Delaunay Triangulation)|Dwyer]] || 1987 || $O(n \log n)$ || $O(n)$? || Exact || Deterministic || [https://link.springer.com/article/10.1007/BF01840356 Time]
|-
| [[ Katajainen and M. Koppinen ( Delaunay Triangulation)| Katajainen and M. Koppinen]] || 1988 || $O(n \log n)$ ||  || Exact || Deterministic || [https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6313167 Time]
|-
| [[Drysdale; Su (2-Dimensional Delaunay Triangulation Delaunay Triangulation)|Drysdale; Su]] || 1996 || $O(n)$ || $O(n)$? || Exact || Deterministic || [https://web.archive.org/web/20120308043808/http://www.cs.berkeley.edu/~jrs/meshpapers/SuDrysdale.pdf Time]
|-
| [[Dwyer (higher dimensions) (General Delaunay Triangulation (d-dimensions) Delaunay Triangulation)|Dwyer (higher dimensions)]] || 1987 || $O(n \log \log n)$ || $O(n)$? || Exact || Deterministic || [https://link.springer.com/article/10.1007/BF02574694 Time]
|-
|-
|}
|}


== Time Complexity graph ==  
== Time Complexity Graph ==  


[[File:Delaunay Triangulation - Time.png|1000px]]
[[File:Delaunay Triangulation - Time.png|1000px]]
== Space Complexity graph ==
[[File:Delaunay Triangulation - Space.png|1000px]]
== Pareto Decades graph ==
[[File:Delaunay Triangulation - Pareto Frontier.png|1000px]]

Latest revision as of 09:09, 28 April 2023

Description

Given a set of points, the Delaunay Triangulation problem is to triangulate the points using the following notion of triangulation.

$AB$ is an edge of the Delaunay triangulation iff there is a circle passing through $A$ and $B$ so that all other points in the point set, $C$, where $C$ is not equal to $A$ or $B$, lie outside the circle. Equivalently, all triangles in the Delaunay triangulation for a set of points will have empty circumscribed circles. That is, no points lie in the interior of any triangle's circumcircle.

Parameters

$n$: number of points

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Fortune 1987 $O(n \log n)$ $O(n)$ Exact Deterministic Time
Naive algorithm 1934 $O(n^{4})$? (previously $O(n^{2})$) $O(n)$ Exact Deterministic
Flipping algorithm 1999 $O(n^{2})$ $O(n)$ Exact Deterministic Time
de Berg; Cheong 2008 $O(n \log n)$ $O(n)$ Exact Deterministic Time
Bowyer–Watson algorithm 1981 $O(n \log n)$ $O(n)$ Exact Deterministic Time
Belloch 2006 $O(n \log n)$ $O(n)$ Exact Parallel Time
Guibas; Stofli 1985 $O(n \log n)$ $O(n)$ Exact Deterministic Time
Fortune 1992 $O(n^{2})$ $O(n)$ Exact Deterministic Time
S-hull (Sinclair) 2010 $O(n \log n)$ $O(n)$ Exact Deterministic Time
Dwyer 1987 $O(n \log n)$ $O(n)$? Exact Deterministic Time
Katajainen and M. Koppinen 1988 $O(n \log n)$ Exact Deterministic Time
Drysdale; Su 1996 $O(n)$ $O(n)$? Exact Deterministic Time
Dwyer (higher dimensions) 1987 $O(n \log \log n)$ $O(n)$? Exact Deterministic Time

Time Complexity Graph

Delaunay Triangulation - Time.png