Square Matrix LU Decomposition: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 28: Line 28:
| [[Bunch; Hopcroft (Square Matrix LU Decomposition LU Decomposition)|Bunch; Hopcroft]] || 1974 || $O(n^{2.{37}6})$ || $\tilde{O}(n^{2})$ || Exact || Deterministic || [https://dl.acm.org/citation.cfm?id=248979 Time]
| [[Bunch; Hopcroft (Square Matrix LU Decomposition LU Decomposition)|Bunch; Hopcroft]] || 1974 || $O(n^{2.{37}6})$ || $\tilde{O}(n^{2})$ || Exact || Deterministic || [https://dl.acm.org/citation.cfm?id=248979 Time]
|-
|-
| [[Closed formula ( LU Decomposition)|Closed formula]] || 1975 || $O(nlogn)$ ||  || Exact || Deterministic ||   
| [[Closed formula (Square Matrix LU Decomposition LU Decomposition)|Closed formula]] || 1975 || $O(n \log n)$ ||  || Exact || Deterministic ||   
|-
|-
| [[David ( LU Decomposition)|David]] || 2006 || $O(nlogn)$ ||  || Exact || Deterministic ||   
| [[David (Square Matrix LU Decomposition LU Decomposition)|David]] || 2006 || $O(n \log n)$ ||  || Exact || Deterministic ||   
|-
|-
| [[Press, Teukolsky, Flannery (Square Matrix LU Decomposition LU Decomposition)|Press, Teukolsky, Flannery]] || 2007 || $O(n^{3})$ || $\tilde{O}(n)$ || Exact || Deterministic || [https://books.google.com/books?hl=en&lr=&id=1aAOdzK3FegC&oi=fnd&pg=PA1&dq=Teukolsky%3B+Flannery+2007&ots=3lSiFaAqkk&sig=2oq9JI3u1R93uXfUm2QIEFxlXm4#v=onepage&q=Teukolsky%3B%20Flannery%202007&f=false Time]
| [[Press, Teukolsky, Flannery (Square Matrix LU Decomposition LU Decomposition)|Press, Teukolsky, Flannery]] || 2007 || $O(n^{3})$ || $\tilde{O}(n)$ || Exact || Deterministic || [https://books.google.com/books?hl=en&lr=&id=1aAOdzK3FegC&oi=fnd&pg=PA1&dq=Teukolsky#v=onepage&q=Teukolsky&f=false Time]
|-
|-
|}
|}
Line 39: Line 39:


[[File:LU Decomposition - Square Matrix LU Decomposition - Time.png|1000px]]
[[File:LU Decomposition - Square Matrix LU Decomposition - Time.png|1000px]]
== Space Complexity Graph ==
[[File:LU Decomposition - Square Matrix LU Decomposition - Space.png|1000px]]
== Space-Time Tradeoff Improvements ==
[[File:LU Decomposition - Square Matrix LU Decomposition - Pareto Frontier.png|1000px]]

Latest revision as of 09:07, 28 April 2023

Description

Lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix. In this specific case, the input is a square $n \times n$ matrix

Related Problems

Generalizations: Rectangular Matrix LU Decomposition

Parameters

$n$: dimension of square matrix

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Doolittle Algorithm 1878 $O(n^{3})$ $\tilde{O}({1})$ Exact Deterministic
Crout and LUP algorithms 2007 $O(n^{3})$ $\tilde{O}({1})$ Exact Deterministic Time
Okunev; Johnson 1997 $O(n^{3})$ $O({1})$ Exact Deterministic Time
Bunch; Hopcroft 1974 $O(n^{2.{37}6})$ $\tilde{O}(n^{2})$ Exact Deterministic Time
Closed formula 1975 $O(n \log n)$ Exact Deterministic
David 2006 $O(n \log n)$ Exact Deterministic
Press, Teukolsky, Flannery 2007 $O(n^{3})$ $\tilde{O}(n)$ Exact Deterministic Time

Time Complexity Graph

LU Decomposition - Square Matrix LU Decomposition - Time.png