Matrix Multiplication: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
Line 67: Line 67:


[[File:Matrix Product - Matrix Multiplication - Time.png|1000px]]
[[File:Matrix Product - Matrix Multiplication - Time.png|1000px]]
== Space Complexity Graph ==
[[File:Matrix Product - Matrix Multiplication - Space.png|1000px]]
== Time-Space Tradeoff ==
[[File:Matrix Product - Matrix Multiplication - Pareto Frontier.png|1000px]]


== References/Citation ==  
== References/Citation ==  


https://arxiv.org/pdf/2010.05846.pdf
https://arxiv.org/pdf/2010.05846.pdf

Latest revision as of 09:05, 28 April 2023

Description

Matrix Multiplication or Matrix Product is a binary operation that produces a matrix from two matrices with entries in a field; or; more generally; in a ring or even a semiring.

Related Problems

Subproblem: Boolean Matrix Multiplication, Matrix Product Verification

Related: Boolean Matrix Multiplication (Combinatorial), Matrix Product Verification, Distance Product, $(\min, \leq)$ Product

Parameters

$n$: dimension of square matrix

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Naive algorithm 1940 $O(n^{3})$ $O({1})$ auxiliary Exact Deterministic
Strassen's algorithm 1969 $O(n^{(log7/log2)}) ~ O(n^{2.{80}7})$ $O(n^{2})$ Exact Deterministic Time & Space
Pan's algorithm 1978 $O(n^{(log({143640})/log({70}))}) ~ O(n^{2.{79}5})$ $O(n^{2})$ Exact Deterministic Time
Romani's algorithm 1981 $O(n^{2.{5166}5})$ $O(n^{2})$ Exact Deterministic Time
Coppersmith–Winograd algorithm 1981 $O(n^{2.{49554}8})$ $O(n^{2})$ Exact Deterministic Time
Strassen's algorithm 1986 $O(n^{(log54/log5)}) ~ O(n^{({2.4785})})$ $O(n^{2})$ Exact Deterministic Time
Coppersmith–Winograd algorithm 1990 $O(n^{2.{375}5})$ $O(n^{2})$ Exact Deterministic Time
Vassilevska Williams 2014 $O(n^{2.{37287}3})$ $O(n^{2})$ Exact Deterministic Time
François Le Gall 2014 $O(n^{2.{372863}9})$ $O(n^{2})$ Exact Deterministic Time
Bini's algorithm 1979 $O(n^{2.{779}9})$ $O(n^{2})$ $O(n logn)$ error Deterministic Time
Schonhage's algorithm 1980 $O(n^{({3}*\log {52}/l \og {110})}) ~ O(n^{2.{521}8})$ $O(n^{2})$ ? Deterministic Time
Output-Sensitive Quantum BMM 2018 O*( \min \{n^{1/3} L^{17/{3}0}, n^{1.5} L^{1/4}\}) Exact Quantum Time
2018 $O(n^{3} / log^{2.25} n)$ Exact Deterministic Time
O'Neil 1973 $O(n^{3})$ Exact Deterministic Time
Method of Four Russians 1970 $O(n^{3}/(log n)$^{2}) Exact Deterministic Time
Bansal, Williams 2009 $O(n^{3} * (log log n)$^{2} / log^{2.25} n) Exact Randomized Time
Bansal, Williams 2009 $O(n^{3} * (log log n)$^{2} / (w * (log n)^{7}/{6})) Exact Randomized Time
Chan 2015 $O(n^{3} * (log log n)$^{3} / log^{3} n) Exact Deterministic Time
Chan 2015 $O(n^{3} * (log w)$^{3} / (w * log^{2} n)) Exact Deterministic Time
Yu 2015 $O(n^{3}*poly(log log n)$/log^{4} n) Exact Deterministic Time

Time Complexity Graph

Matrix Product - Matrix Multiplication - Time.png

References/Citation

https://arxiv.org/pdf/2010.05846.pdf