Ap-reach: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:ap-reach (Vertex Reachability)}} == Description == Given a directed graph $G=(V,E)$, determine for each pair $s \neq t \in V$ whether $t$ is reachable from $s$. == Related Problems == Generalizations: st-Reach Related: #SSR, sensitive incremental #SSR, ST-Reach, constant sensitivity incremental ST-Reach, 1-sensitive incremental ss-reach, 2-sensitive incremental st-reach == Parameters == <pre>n: number of vertices m: num...")
 
No edit summary
 
(One intermediate revision by the same user not shown)
Line 12: Line 12:
== Parameters ==  
== Parameters ==  


<pre>n: number of vertices
$n$: number of vertices
m: number of edges</pre>
 
$m$: number of edges


== Table of Algorithms ==  
== Table of Algorithms ==  

Latest revision as of 08:28, 10 April 2023

Description

Given a directed graph $G=(V,E)$, determine for each pair $s \neq t \in V$ whether $t$ is reachable from $s$.

Related Problems

Generalizations: st-Reach

Related: #SSR, sensitive incremental #SSR, ST-Reach, constant sensitivity incremental ST-Reach, 1-sensitive incremental ss-reach, 2-sensitive incremental st-reach

Parameters

$n$: number of vertices

$m$: number of edges

Table of Algorithms

Currently no algorithms in our database for the given problem.

Reductions FROM Problem

Problem Implication Year Citation Reduction
BMM assume: BMM
then: combinatorial algorithms cannot solve target with preprocessing time $O(n^{3-\epsilon})$, and update and query times $O(n^{2-\epsilon})$ for any $\epsilon > {0}$
2017 https://arxiv.org/pdf/1703.01638.pdf link