Median String Problem with Unbounded Alphabets: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
== Parameters ==  
== Parameters ==  


n: number of strings
$n$: number of strings


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 20: Line 20:
|-
|-


| [[Naive Solution (Median String Problem with Unbounded Alphabets Median String Problem)|Naive Solution]] || 1965 || {2}^$O(n)$ || $O(n)$ auxiliary || Exact || Deterministic ||   
| [[Naive Solution (Median String Problem with Unbounded Alphabets Median String Problem)|Naive Solution]] || 1965 || {2}^$O(n)$ || $O(n)$ || Exact || Deterministic ||   
|-
|-
|}
|}

Revision as of 08:25, 10 April 2023

Description

Given an unbounded alphabet $\Sigma$, a set $W$ of strings over $\Sigma$, and the Levenshtein distance between strings, find a string over $\Sigma$ that minimizes the sum of distances to the strings of $W$.

Related Problems

Related: Median String Problem with Bounded Alphabets, Median String Problem with Binary Alphabets

Parameters

$n$: number of strings

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Naive Solution 1965 {2}^$O(n)$ $O(n)$ Exact Deterministic

Time Complexity Graph

Median String Problem - Median String Problem with Unbounded Alphabets - Time.png

Space Complexity Graph

Median String Problem - Median String Problem with Unbounded Alphabets - Space.png

Time-Space Tradeoff

Median String Problem - Median String Problem with Unbounded Alphabets - Pareto Frontier.png

References/Citation

https://link.springer.com/content/pdf/10.1007/3-540-44888-8_23.pdf