Maximum Cut: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:Maximum Cut (Maximum Cut)}} == Description == Given a graph $G=(V, E)$ with edge weights $c_e > 0$ for all $e\in E$, find a cut $\delta(W)$ such that $c(\delta(W)):=\Sigma_{e\in \dela(W)} c_e$ is as large as possible. == Parameters == <pre>n: number of vertices m: number of edges</pre> == Table of Algorithms == {| class="wikitable sortable" style="text-align:center;" width="100%" ! Name !! Year !! Time !! Space !! Approximation Factor !! Model !!...")
 
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 6: Line 6:
== Parameters ==  
== Parameters ==  


<pre>n: number of vertices
$n$: number of vertices
m: number of edges</pre>
 
$m$: number of edges


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 17: Line 18:
|-
|-


| [[Hadlock (Maximum Cut Maximum Cut)|Hadlock]] || 1975 || $O({2}^V)$ ||  || Exact || Deterministic ||   
| [[Hadlock (Maximum Cut Maximum Cut)|Hadlock]] || 1975 || $O({2}^n)$ ||  || Exact || Deterministic ||   
|-
| [[Motwani & Raghavan (Maximum Cut, Approximate Maximum Cut)|Motwani & Raghavan]] || 1995 || $O(n)$? || $O(n)$ || 0.5 || Randomized || [https://rajsain.files.wordpress.com/2013/11/randomized-algorithms-motwani-and-raghavan.pdf Time]
|-
| [[Mitzenmacher & Upfal (Maximum Cut, Approximate Maximum Cut)|Mitzenmacher & Upfal]] || 2005 || $O(mn)$? || $O(n)$ || 0.5 || Deterministic || [http://lib.ysu.am/open_books/413311.pdf Time]
|-
| [[Khuller; Raghavachari & Young, "Greedy Methods" (Maximum Cut, Approximate Maximum Cut)|Khuller; Raghavachari & Young, "Greedy Methods"]] || 2007 || $O(n^{2})$? || $O(n)$ || 0.5 || Deterministic || [https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/Handbook%20of%20Approximation%20Algorithms%20and%20Metaheuristics%20%5BGonzalez%202007-01-05%5D.pdf Time]
|-
| [[Ausiello et al. (Maximum Cut, Approximate Maximum Cut)|Ausiello et al.]] || 2003 || $O(n^{3} \log m)$ || $O(n^{2})$? || ~0.878; assuming this is the goemans-williamson algorithm || Deterministic || [https://link.springer.com/content/pdf/10.1007/978-3-642-58412-1.pdf?pdf=button Time]
|-
| [[Dunning; Gupta & Silberholz (Maximum Cut, Approximate Maximum Cut)|Dunning; Gupta & Silberholz]] || 2018 || $O(mn)$ ||  || Exact || Deterministic || [https://pubsonline.informs.org/doi/epdf/10.1287/ijoc.2017.0798 Time]
|-
|-
|}
|}


== Time Complexity graph ==  
== Time Complexity Graph ==  


[[File:Maximum Cut - Time.png|1000px]]
[[File:Maximum Cut - Time.png|1000px]]

Latest revision as of 08:24, 10 April 2023

Description

Given a graph $G=(V, E)$ with edge weights $c_e > 0$ for all $e\in E$, find a cut $\delta(W)$ such that $c(\delta(W)):=\Sigma_{e\in \dela(W)} c_e$ is as large as possible.

Parameters

$n$: number of vertices

$m$: number of edges

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Hadlock 1975 $O({2}^n)$ Exact Deterministic
Motwani & Raghavan 1995 $O(n)$? $O(n)$ 0.5 Randomized Time
Mitzenmacher & Upfal 2005 $O(mn)$? $O(n)$ 0.5 Deterministic Time
Khuller; Raghavachari & Young, "Greedy Methods" 2007 $O(n^{2})$? $O(n)$ 0.5 Deterministic Time
Ausiello et al. 2003 $O(n^{3} \log m)$ $O(n^{2})$? ~0.878; assuming this is the goemans-williamson algorithm Deterministic Time
Dunning; Gupta & Silberholz 2018 $O(mn)$ Exact Deterministic Time

Time Complexity Graph

Maximum Cut - Time.png