The Frequent Words Problem: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
== Parameters ==  
== Parameters ==  


n: length of string
$n$: length of string


k: length of words
$k$: length of words


sigma: size of alphabet
$\sigma$: size of alphabet


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 20: Line 20:
|-
|-


| [[Naive solution (The Frequent Words Problem The Frequent Words Problem)|Naive solution]] || 1940 || $O(n)$ || $O(max(n, sigma^k)$) auxiliary || Exact || Deterministic ||   
| [[Naive solution (The Frequent Words Problem The Frequent Words Problem)|Naive solution]] || 1940 || $O(n)$ || $O(max(n, \sigma^k)$) || Exact || Deterministic ||   
|-
|-
| [[Rabin Karp (The Frequent Words Problem The Frequent Words Problem)|Rabin Karp]] || 1987 || $O(n)$ || $O(max(n, sigma^k)$) auxiliary? || Exact || Deterministic ||   
| [[Rabin Karp (The Frequent Words Problem The Frequent Words Problem)|Rabin Karp]] || 1987 || $O(n)$ || $O(max(n, \sigma^k)$)? || Exact || Deterministic ||   
|-
|-
|}
|}

Revision as of 07:53, 10 April 2023

Description

Given a string of length $n$ and in input integer $k$, determine the most frequent $k$-mers in the string, i.e. the most frequent words of length $k$.

Parameters

$n$: length of string

$k$: length of words

$\sigma$: size of alphabet

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Naive solution 1940 $O(n)$ $O(max(n, \sigma^k)$) Exact Deterministic
Rabin Karp 1987 $O(n)$ $O(max(n, \sigma^k)$)? Exact Deterministic

Time Complexity Graph

The Frequent Words Problem - Time.png

Space Complexity Graph

The Frequent Words Problem - Space.png

Time-Space Tradeoff

The Frequent Words Problem - Pareto Frontier.png

References/Citation

http://bioinformaticsalgorithms.com/data/debugdatasets/replication/FrequentWordsProblem.pdf