Cycle Detection: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
== Parameters ==  
== Parameters ==  


t_f: time to perform one evaluation of f
$t_f$: time to perform one evaluation of $f$


\mu: the starting index of the cycle
$\mu$: the starting index of the cycle


\lambda: the period of the cycle
$\lambda$: the period of the cycle


M: number of values stored
$M$: number of values stored


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 22: Line 22:
|-
|-


| [[Sedgewick; Szymanski; and Yao ( Cycle Detection)|Sedgewick; Szymanski; and Yao]] || 1982 || $(\mu + \lambda)({1}+\Theta({1}/sqrt(M)))$ || M || Exact || Deterministic || [https://epubs.siam.org/doi/abs/10.1137/0211030?journalCode=smjcat Time & Space]
| [[Sedgewick; Szymanski; and Yao (Cycle Detection Cycle Detection)|Sedgewick; Szymanski; and Yao]] || 1982 || $(\mu + \lambda)({1}+\Theta({1}/sqrt(M)))$ || M || Exact || Deterministic || [https://epubs.siam.org/doi/abs/10.1137/0211030?journalCode=smjcat Time & Space]
|-
|-
| [[Nivasch ( Cycle Detection)|Nivasch]] || 2004 || $O(\mu + \lambda)$ || $O(logn)$ || Exact || Deterministic || [https://drive.google.com/file/d/16H_lrjeaBJqWvcn07C_w-6VNHldJ-ZZl/view Time] & [https://www.gabrielnivasch.org/fun/cycle-detection Space]
| [[Nivasch (Cycle Detection Cycle Detection)|Nivasch]] || 2004 || $O(\mu + \lambda)$ || $O(\log\mu)$ || Exact || Deterministic || [https://drive.google.com/file/d/16H_lrjeaBJqWvcn07C_w-6VNHldJ-ZZl/view Time] & [https://www.gabrielnivasch.org/fun/cycle-detection Space]
|-
|-
| [[Floyd's tortoise and hare algorithm ( Cycle Detection)|Floyd's tortoise and hare algorithm]] || 1967 || $O((\lambda + \mu)$ t_f) || $O({1})$ || Exact || Deterministic || [http://pds7.egloos.com/pds/200801/07/29/p636-floyd.pdf Time]
| [[Floyd's tortoise and hare algorithm ( Cycle Detection)|Floyd's tortoise and hare algorithm]] || 1967 || $O((\lambda + \mu)$ t_f) || $O({1})$ || Exact || Deterministic || [http://pds7.egloos.com/pds/200801/07/29/p636-floyd.pdf Time]

Revision as of 07:52, 10 April 2023

Description

Cycle detection or cycle finding is the algorithmic problem of finding a cycle in a sequence of iterated function values.

Parameters

$t_f$: time to perform one evaluation of $f$

$\mu$: the starting index of the cycle

$\lambda$: the period of the cycle

$M$: number of values stored

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Sedgewick; Szymanski; and Yao 1982 $(\mu + \lambda)({1}+\Theta({1}/sqrt(M)))$ M Exact Deterministic Time & Space
Nivasch 2004 $O(\mu + \lambda)$ $O(\log\mu)$ Exact Deterministic Time & Space
Floyd's tortoise and hare algorithm 1967 $O((\lambda + \mu)$ t_f) $O({1})$ Exact Deterministic Time
Brent's algorithm 1973 $O((\lambda + \mu)$ t_f) $O({1})$ Exact Deterministic Time
Gosper's algorithm 1978 $O((\lambda + \mu)$ log(\lambda + \mu) t_f) \Theta(log(\mu + \lambda)) Exact Deterministic Time & Space

Time Complexity Graph

Cycle Detection - Time.png

Space Complexity Graph

Cycle Detection - Space.png

Time-Space Tradeoff

Cycle Detection - Pareto Frontier.png

References/Citation

https://www.sciencedirect.com/science/article/pii/0304397585900441?via%3Dihub