Inexact Laplacian Solver: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:Inexact Laplacian Solver (SDD Systems Solvers)}} == Description == This problem refers to solving equations of the form $Lx = b$ where $L$ is a Laplacian of a graph. In other words, this is solving equations of the form $Ax = b$ for a SDD matrix $A$. This variation of the problem permits some error. == Related Problems == Related: Exact Laplacian Solver == Parameters == No parameters found. == Table of Algorithms == {| class="wikitable sort...")
 
No edit summary
 
(One intermediate revision by the same user not shown)
Line 12: Line 12:
== Parameters ==  
== Parameters ==  


No parameters found.
$n$: dimension of matrix


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 22: Line 22:
|-
|-


| [[Spielman, Teng  (Inexact Laplacian Solver SDD Systems Solvers)|Spielman, Teng ]] || 2004 || $O(m log^c n)$ || $O(n)$ || \epsilon || Deterministic || [https://dl.acm.org/doi/pdf/10.1145/1007352.1007372?casa_token=k60CrC_UJp0AAAAA:yGVve4fRNbftRM0P7aaEbq8OIlxa4nRy8-CjZErlGrBwBfPEt0ECHGYc8Ei48rdA9W9NoY73xC2W Time]
| [[Spielman, Teng  (Inexact Laplacian Solver SDD Systems Solvers)|Spielman, Teng ]] || 2004 || $O(m \log^c n)$ || $O(n)$ || \epsilon || Deterministic || [https://dl.acm.org/doi/pdf/10.1145/1007352.1007372?casa_token=k60CrC_UJp0AAAAA:yGVve4fRNbftRM0P7aaEbq8OIlxa4nRy8-CjZErlGrBwBfPEt0ECHGYc8Ei48rdA9W9NoY73xC2W Time]
|-
|-
| [[Vaidya (Inexact Laplacian Solver SDD Systems Solvers)|Vaidya]] || 1990 || $O(mn^{({3}/{4})$}) || $O(n)$ || \epsilon || Deterministic ||   
| [[Vaidya (Inexact Laplacian Solver SDD Systems Solvers)|Vaidya]] || 1990 || $O(mn^{({3}/{4})$}) || $O(n)$ || \epsilon || Deterministic ||   
Line 28: Line 28:
| [[Gremban; Miller; Zagha (Inexact Laplacian Solver SDD Systems Solvers)|Gremban; Miller; Zagha]] || 1995 || $O(n^{2})$ || $O(n^{2})$ || ? || Deterministic || [https://www.cs.cmu.edu/~glmiller/Publications/Papers/GrMiZa94-tr.pdf Time & Space]
| [[Gremban; Miller; Zagha (Inexact Laplacian Solver SDD Systems Solvers)|Gremban; Miller; Zagha]] || 1995 || $O(n^{2})$ || $O(n^{2})$ || ? || Deterministic || [https://www.cs.cmu.edu/~glmiller/Publications/Papers/GrMiZa94-tr.pdf Time & Space]
|-
|-
| [[Bern; Gilbert;  Hendrickson (Inexact Laplacian Solver SDD Systems Solvers)|Bern; Gilbert;  Hendrickson]] || 2006 || $O(n loglogn)$ ||  || Exact || Deterministic || [https://dl.acm.org/citation.cfm?id=1117896 Time]
| [[Bern; Gilbert;  Hendrickson (Inexact Laplacian Solver SDD Systems Solvers)|Bern; Gilbert;  Hendrickson]] || 2006 || $O(n \log \log n)$ ||  || Exact || Deterministic || [https://dl.acm.org/citation.cfm?id=1117896 Time]
|-
|-
| [[Boman; Hendrickson (Inexact Laplacian Solver SDD Systems Solvers)|Boman; Hendrickson]] || 2003 || $\tilde{O}(mn^{({1}/{2})})$ ||  || \epsilon || Deterministic || [https://epubs.siam.org/doi/10.1137/S0895479801390637 Time]
| [[Boman; Hendrickson (Inexact Laplacian Solver SDD Systems Solvers)|Boman; Hendrickson]] || 2003 || $\tilde{O}(mn^{({1}/{2})})$ ||  || \epsilon || Deterministic || [https://epubs.siam.org/doi/10.1137/S0895479801390637 Time]
|-
|-
| [[Boman; Chen; Hendrickson; Toledo (Inexact Laplacian Solver SDD Systems Solvers)|Boman; Chen; Hendrickson; Toledo]] || 2004 || $O(n  log({1}/ϵ)$ ) || $O(n)$ || \epsilon || Deterministic || [https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.343 Time]
| [[Boman; Chen; Hendrickson; Toledo (Inexact Laplacian Solver SDD Systems Solvers)|Boman; Chen; Hendrickson; Toledo]] || 2004 || $O(n  \log({1}/ϵ)$ ) || $O(n)$ || \epsilon || Deterministic || [https://onlinelibrary.wiley.com/doi/abs/10.1002/nla.343 Time]
|-
|-
| [[Koutis; Miller and Peng (Inexact Laplacian Solver SDD Systems Solvers)|Koutis; Miller and Peng]] || 2010 || $\tilde{O}(m log n)$ || $O(n)$ || \epsilon || Deterministic || [https://arxiv.org/abs/1102.4842 Time]
| [[Koutis; Miller and Peng (Inexact Laplacian Solver SDD Systems Solvers)|Koutis; Miller and Peng]] || 2010 || $\tilde{O}(m \log n)$ || $O(n)$ || \epsilon || Deterministic || [https://arxiv.org/abs/1102.4842 Time]
|-
|-
| [[Koutis; Miller and Peng (Inexact Laplacian Solver SDD Systems Solvers)|Koutis; Miller and Peng]] || 2011 || $\tilde{O}(m log n)$ || $O(n)$ || \epsilon || Deterministic || [https://arxiv.org/abs/1003.2958 Time]
| [[Koutis; Miller and Peng (Inexact Laplacian Solver SDD Systems Solvers)|Koutis; Miller and Peng]] || 2011 || $\tilde{O}(m \log n)$ || $O(n)$ || \epsilon || Deterministic || [https://arxiv.org/abs/1003.2958 Time]
|-
|-
| [[Blelloch; Koutis;  Miller; Tangwongsan (Inexact Laplacian Solver SDD Systems Solvers)|Blelloch; Koutis;  Miller; Tangwongsan]] || 2010 || $O(n logn)$ || m + $O(n/log n)$ || ? || Deterministic || [https://ieeexplore.ieee.org/document/5644892 Time] & [https://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/jkoutis/papers/SC10-paper.pdf Space]
| [[Blelloch; Koutis;  Miller; Tangwongsan (Inexact Laplacian Solver SDD Systems Solvers)|Blelloch; Koutis;  Miller; Tangwongsan]] || 2010 || $O(n \log n)$ || m + $O(n/\log n)$ || ? || Deterministic || [https://ieeexplore.ieee.org/document/5644892 Time] & [https://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/jkoutis/papers/SC10-paper.pdf Space]
|-
|-
| [[Briggs; Henson; McCormick ( SDD Systems Solvers)|Briggs; Henson; McCormick]] || 2000 || $O(n^{1.{2}5} loglogn)$ ||  || Exact || Deterministic || [http://www.math.ust.hk/~mamu/courses/531/tutorial_with_corrections.pdf Time]
| [[Briggs; Henson; McCormick ( SDD Systems Solvers)|Briggs; Henson; McCormick]] || 2000 || $O(n^{1.{2}5} \log \log n)$ ||  || Exact || Deterministic || [http://www.math.ust.hk/~mamu/courses/531/tutorial_with_corrections.pdf Time]
|-
|-
| [[Kelner; Orecchia; Sidford; Zhu (Inexact Laplacian Solver SDD Systems Solvers)|Kelner; Orecchia; Sidford; Zhu]] || 2013 || $O(m log^{2} (n)$ loglogn) || $O(n)$ || \epsilon || Deterministic || [https://arxiv.org/pdf/1301.6628.pdf Time]
| [[Kelner; Orecchia; Sidford; Zhu (Inexact Laplacian Solver SDD Systems Solvers)|Kelner; Orecchia; Sidford; Zhu]] || 2013 || $O(m \log^{2} (n)$ \log \log n) || $O(n)$ || \epsilon || Deterministic || [https://arxiv.org/pdf/1301.6628.pdf Time]
|-
|-
| [[Lee; Peng; Spielman (Inexact Laplacian Solver SDD Systems Solvers)|Lee; Peng; Spielman]] || 2015 || $O(n)$ || $O(n)$ || The sparse Cholesky decomposition is a 2-approximation || Deterministic || [https://arxiv.org/abs/1506.08204 Time]
| [[Lee; Peng; Spielman (Inexact Laplacian Solver SDD Systems Solvers)|Lee; Peng; Spielman]] || 2015 || $O(n)$ || $O(n)$ || The sparse Cholesky decomposition is a 2-approximation || Deterministic || [https://arxiv.org/abs/1506.08204 Time]
|-
|-
| [[Daitch; Spielman (Inexact Laplacian Solver SDD Systems Solvers)|Daitch; Spielman]] || 2007 || $O(n^{5/4} (log^{2} (n)$ loglogn)^{3/4} log({1}/ϵ)) || $O(n)$ || \epsilon || Deterministic || [https://arxiv.org/abs/cs/0703119 Time]
| [[Daitch; Spielman (Inexact Laplacian Solver SDD Systems Solvers)|Daitch; Spielman]] || 2007 || $O(n^{5/4} (\log^{2} (n)$ \log\log n)^{3/4} \log({1}/ϵ)) || $O(n)$ || \epsilon || Deterministic || [https://arxiv.org/abs/cs/0703119 Time]
|-
|-
|}
|}


== Time Complexity graph ==  
== Time Complexity Graph ==  


[[File:SDD Systems Solvers - Inexact Laplacian Solver - Time.png|1000px]]
[[File:SDD Systems Solvers - Inexact Laplacian Solver - Time.png|1000px]]

Latest revision as of 07:52, 10 April 2023

Description

This problem refers to solving equations of the form $Lx = b$ where $L$ is a Laplacian of a graph. In other words, this is solving equations of the form $Ax = b$ for a SDD matrix $A$.

This variation of the problem permits some error.

Related Problems

Related: Exact Laplacian Solver

Parameters

$n$: dimension of matrix

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Spielman, Teng 2004 $O(m \log^c n)$ $O(n)$ \epsilon Deterministic Time
Vaidya 1990 $O(mn^{({3}/{4})$}) $O(n)$ \epsilon Deterministic
Gremban; Miller; Zagha 1995 $O(n^{2})$ $O(n^{2})$ ? Deterministic Time & Space
Bern; Gilbert; Hendrickson 2006 $O(n \log \log n)$ Exact Deterministic Time
Boman; Hendrickson 2003 $\tilde{O}(mn^{({1}/{2})})$ \epsilon Deterministic Time
Boman; Chen; Hendrickson; Toledo 2004 $O(n \log({1}/ϵ)$ ) $O(n)$ \epsilon Deterministic Time
Koutis; Miller and Peng 2010 $\tilde{O}(m \log n)$ $O(n)$ \epsilon Deterministic Time
Koutis; Miller and Peng 2011 $\tilde{O}(m \log n)$ $O(n)$ \epsilon Deterministic Time
Blelloch; Koutis; Miller; Tangwongsan 2010 $O(n \log n)$ m + $O(n/\log n)$ ? Deterministic Time & Space
Briggs; Henson; McCormick 2000 $O(n^{1.{2}5} \log \log n)$ Exact Deterministic Time
Kelner; Orecchia; Sidford; Zhu 2013 $O(m \log^{2} (n)$ \log \log n) $O(n)$ \epsilon Deterministic Time
Lee; Peng; Spielman 2015 $O(n)$ $O(n)$ The sparse Cholesky decomposition is a 2-approximation Deterministic Time
Daitch; Spielman 2007 $O(n^{5/4} (\log^{2} (n)$ \log\log n)^{3/4} \log({1}/ϵ)) $O(n)$ \epsilon Deterministic Time

Time Complexity Graph

SDD Systems Solvers - Inexact Laplacian Solver - Time.png