2-dimensional array representation: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:2-dimensional array representation (Closest Pair Problem)}} == Description == Given $n$ points in 2-dimensional space in array representation, find a pair of points with the smallest distance between them. == Related Problems == Related: k-dimensional space, $l_m$ (or $l_\infty$) norm, 2-dimensional space, $l_m$ (or $l_\infty$) norm, 2-dimensional space, Euclidean metric == Parameters == No parameters found. == Table of Algorithms ==...")
 
No edit summary
 
Line 10: Line 10:
== Parameters ==  
== Parameters ==  


No parameters found.
$n$: number of points
 
$k$: dimension of space


== Table of Algorithms ==  
== Table of Algorithms ==  
Line 20: Line 22:
|-
|-


| [[Khuller; Matias Randomized Sieve ( Closest Pair Problem)|Khuller; Matias Randomized Sieve]] || 1995 || $O(n)$ || $O(n)$, not sure if this is auxiliary || Exact || Randomized || [https://dl.acm.org/citation.cfm?id=207181 Time] & [https://www.sciencedirect.com/science/article/pii/S0890540185710498, Space]
| [[Khuller; Matias ( Closest Pair Problem)|Khuller; Matias]] || 1995 || $O(n)$ || $O(n)$, not sure if this is auxiliary || Exact || Randomized || [https://www.sciencedirect.com/science/article/pii/S0890540185710498 Time] & [https://www.sciencedirect.com/science/article/pii/S0890540185710498, Space]
|-
|-
| [[Dyer (2-dimensional array representation Closest Pair Problem)|Dyer]] || 1980 || $O(n)$ using $O(n^{2})$ processors || $O(n^{2})$ || Exact || Parallel || [https://www.sciencedirect.com/science/article/pii/0020019080900356 Time & Space]
| [[Dyer (2-dimensional array representation Closest Pair Problem)|Dyer]] || 1980 || $O(n)$ using $O(n^{2})$ processors || $O(n^{2})$ || Exact || Parallel || [https://www.sciencedirect.com/science/article/pii/0020019080900356 Time & Space]
|-
|-
|}
|}

Latest revision as of 07:52, 10 April 2023

Description

Given $n$ points in 2-dimensional space in array representation, find a pair of points with the smallest distance between them.

Related Problems

Related: k-dimensional space, $l_m$ (or $l_\infty$) norm, 2-dimensional space, $l_m$ (or $l_\infty$) norm, 2-dimensional space, Euclidean metric

Parameters

$n$: number of points

$k$: dimension of space

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Khuller; Matias 1995 $O(n)$ $O(n)$, not sure if this is auxiliary Exact Randomized Time & Space
Dyer 1980 $O(n)$ using $O(n^{2})$ processors $O(n^{2})$ Exact Parallel Time & Space