Motif Search: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 50: Line 50:
| [[Bailey TL; Elkan C MEME ( Motif Search)|Bailey TL; Elkan C MEME]] || 1995 || $O(n^{2}m^{2})$ || $O(nm)$ || Exact || Deterministic || [https://link.springer.com/article/10.1007/BF00993379 Time]
| [[Bailey TL; Elkan C MEME ( Motif Search)|Bailey TL; Elkan C MEME]] || 1995 || $O(n^{2}m^{2})$ || $O(nm)$ || Exact || Deterministic || [https://link.springer.com/article/10.1007/BF00993379 Time]
|-
|-
| [[Sagot M ( Motif Search)|Sagot M]] || 1988 || $O(n logn m^{1.{4}5})$ || $O(mn^{2}/w)$ || Exact || Deterministic || [https://link.springer.com/chapter/10.1007/BFb0054337 Time & Space]
| [[Sagot M ( Motif Search)|Sagot M]] || 1988 || $O(n log(n)$ m^{1.{4}5}) || $O(mn^{2}/w)$ || Exact || Deterministic || [https://link.springer.com/chapter/10.1007/BFb0054337 Time & Space]
|-
|-
| [[Liang Cwinnower ( Motif Search)|Liang Cwinnower]] || 2003 || $O(nm^{0.5})$ || $O(m^{2})$ || Exact || Deterministic || [https://www.worldscientific.com/doi/10.1142/S0219720004000466 Time]
| [[Liang Cwinnower ( Motif Search)|Liang Cwinnower]] || 2003 || $O(nm^{0.5})$ || $O(m^{2})$ || Exact || Deterministic || [https://www.worldscientific.com/doi/10.1142/S0219720004000466 Time]
Line 66: Line 66:
[[File:Motif Search - Space.png|1000px]]
[[File:Motif Search - Space.png|1000px]]


== Pareto Frontier Improvements Graph ==  
== Time-Space Tradeoff ==  


[[File:Motif Search - Pareto Frontier.png|1000px]]
[[File:Motif Search - Pareto Frontier.png|1000px]]

Revision as of 14:47, 15 February 2023

Description

Motif search is the problem of identifying motifs, recurring or conserved patterns, in the strings (typically biological sequence data sets).

Parameters

$n$: size of set of input strings

$m$: size of input strings

$k$: length of substrings

$\sigma$: function $V(k, m)$ defined as the number of $k$-mers that are at most $m$ Hamming distance from the motif space

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Lawrence, Reilly 1990 $O(nm)$ $O(nm)$ Deterministic Time & Space
Lawrence Gibbs Sampling 1993 $O(nm)$ $O(n + m)$ Deterministic Time
MotifSampler 2001 $O(nm)$ $O(n + m)$ Deterministic Time
Speller 1998 $O(mn^{2} \sigma)$ $O(mn^{2}/w)$ Exact Deterministic Time & Space
Mitra 2002 $O(k nm \sigma)$ $O(mnk)$ Exact Deterministic Time & Space
Census 2003 $O(k nm \sigma)$ $O(mnk)$ Exact Deterministic Time & Space
Risotto 2006 $O(mn^{2} \sigma)$ $O(mn^{2})$ Exact Deterministic Time & Space
PMS 2007 $O(nm^{2} \sigma)$ $O(m^{2} n)$ Exact Deterministic Time & Space
Roth AlignACE 1998 $O(nm)$ $O(n + m)$ Deterministic Time
Helden Oligo-Analysis 1998 $O(nm)$ $O(m)$ Exact Deterministic Time
van Helden J; Rios AF; Collado-Vides J 2000 $O(nm)$ $O(m)$ Exact Deterministic Time
Tompa M 1999 $O(nm)$ $O(m^{2})$ Exact Deterministic Time
Sinha S; Tompa M YMF (Yeast Motif Finder) 2000 $O(n^{0.{6}6} m)$ $O(m)$ Exact Deterministic Time
Bailey TL; Elkan C MEME 1995 $O(n^{2}m^{2})$ $O(nm)$ Exact Deterministic Time
Sagot M 1988 $O(n log(n)$ m^{1.{4}5}) $O(mn^{2}/w)$ Exact Deterministic Time & Space
Liang Cwinnower 2003 $O(nm^{0.5})$ $O(m^{2})$ Exact Deterministic Time
Kingsford 2006 $O(mn)$ $O(m^{2}n^{2})$ Exact Deterministic Time

Time Complexity Graph

Motif Search - Time.png

Space Complexity Graph

Motif Search - Space.png

Time-Space Tradeoff

Motif Search - Pareto Frontier.png