Motif Search: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 50: | Line 50: | ||
| [[Bailey TL; Elkan C MEME ( Motif Search)|Bailey TL; Elkan C MEME]] || 1995 || $O(n^{2}m^{2})$ || $O(nm)$ || Exact || Deterministic || [https://link.springer.com/article/10.1007/BF00993379 Time] | | [[Bailey TL; Elkan C MEME ( Motif Search)|Bailey TL; Elkan C MEME]] || 1995 || $O(n^{2}m^{2})$ || $O(nm)$ || Exact || Deterministic || [https://link.springer.com/article/10.1007/BF00993379 Time] | ||
|- | |- | ||
| [[Sagot M ( Motif Search)|Sagot M]] || 1988 || $O(n | | [[Sagot M ( Motif Search)|Sagot M]] || 1988 || $O(n log(n)$ m^{1.{4}5}) || $O(mn^{2}/w)$ || Exact || Deterministic || [https://link.springer.com/chapter/10.1007/BFb0054337 Time & Space] | ||
|- | |- | ||
| [[Liang Cwinnower ( Motif Search)|Liang Cwinnower]] || 2003 || $O(nm^{0.5})$ || $O(m^{2})$ || Exact || Deterministic || [https://www.worldscientific.com/doi/10.1142/S0219720004000466 Time] | | [[Liang Cwinnower ( Motif Search)|Liang Cwinnower]] || 2003 || $O(nm^{0.5})$ || $O(m^{2})$ || Exact || Deterministic || [https://www.worldscientific.com/doi/10.1142/S0219720004000466 Time] | ||
Line 66: | Line 66: | ||
[[File:Motif Search - Space.png|1000px]] | [[File:Motif Search - Space.png|1000px]] | ||
== | == Time-Space Tradeoff == | ||
[[File:Motif Search - Pareto Frontier.png|1000px]] | [[File:Motif Search - Pareto Frontier.png|1000px]] |
Revision as of 14:47, 15 February 2023
Description
Motif search is the problem of identifying motifs, recurring or conserved patterns, in the strings (typically biological sequence data sets).
Parameters
$n$: size of set of input strings
$m$: size of input strings
$k$: length of substrings
$\sigma$: function $V(k, m)$ defined as the number of $k$-mers that are at most $m$ Hamming distance from the motif space
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Lawrence, Reilly | 1990 | $O(nm)$ | $O(nm)$ | Deterministic | Time & Space | |
Lawrence Gibbs Sampling | 1993 | $O(nm)$ | $O(n + m)$ | Deterministic | Time | |
MotifSampler | 2001 | $O(nm)$ | $O(n + m)$ | Deterministic | Time | |
Speller | 1998 | $O(mn^{2} \sigma)$ | $O(mn^{2}/w)$ | Exact | Deterministic | Time & Space |
Mitra | 2002 | $O(k nm \sigma)$ | $O(mnk)$ | Exact | Deterministic | Time & Space |
Census | 2003 | $O(k nm \sigma)$ | $O(mnk)$ | Exact | Deterministic | Time & Space |
Risotto | 2006 | $O(mn^{2} \sigma)$ | $O(mn^{2})$ | Exact | Deterministic | Time & Space |
PMS | 2007 | $O(nm^{2} \sigma)$ | $O(m^{2} n)$ | Exact | Deterministic | Time & Space |
Roth AlignACE | 1998 | $O(nm)$ | $O(n + m)$ | Deterministic | Time | |
Helden Oligo-Analysis | 1998 | $O(nm)$ | $O(m)$ | Exact | Deterministic | Time |
van Helden J; Rios AF; Collado-Vides J | 2000 | $O(nm)$ | $O(m)$ | Exact | Deterministic | Time |
Tompa M | 1999 | $O(nm)$ | $O(m^{2})$ | Exact | Deterministic | Time |
Sinha S; Tompa M YMF (Yeast Motif Finder) | 2000 | $O(n^{0.{6}6} m)$ | $O(m)$ | Exact | Deterministic | Time |
Bailey TL; Elkan C MEME | 1995 | $O(n^{2}m^{2})$ | $O(nm)$ | Exact | Deterministic | Time |
Sagot M | 1988 | $O(n log(n)$ m^{1.{4}5}) | $O(mn^{2}/w)$ | Exact | Deterministic | Time & Space |
Liang Cwinnower | 2003 | $O(nm^{0.5})$ | $O(m^{2})$ | Exact | Deterministic | Time |
Kingsford | 2006 | $O(mn)$ | $O(m^{2}n^{2})$ | Exact | Deterministic | Time |