Optimal Policies for MDPs: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 32: Line 32:
[[File:Optimal Policies for MDPs - Space.png|1000px]]
[[File:Optimal Policies for MDPs - Space.png|1000px]]


== Pareto Frontier Improvements Graph ==  
== Time-Space Tradeoff ==  


[[File:Optimal Policies for MDPs - Pareto Frontier.png|1000px]]
[[File:Optimal Policies for MDPs - Pareto Frontier.png|1000px]]

Revision as of 14:47, 15 February 2023

Description

In an MDP, a policy is a choice of what action to choose at each state An Optimal Policy is a policy where you are always choosing the action that maximizes the “return”/”utility” of the current state. The problem here is to find such an optimal policy from a given MDP.

Parameters

No parameters found.

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Bellman Value Iteration (VI) 1957 $O({2}^n)$ $O(n)$ Exact Deterministic Time
Howard Policy Iteration (PI) 1960 $O(n^{3})$ $O(n)$ Exact Deterministic Time
Puterman Modified Policy Iteration (MPI) 1974 $O(n^{3})$ $O(n)$ Exact Deterministic

Time Complexity Graph

Optimal Policies for MDPs - Time.png

Space Complexity Graph

Optimal Policies for MDPs - Space.png

Time-Space Tradeoff

Optimal Policies for MDPs - Pareto Frontier.png