Matrix Chain Ordering Problem: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 24: Line 24:
| [[Brute Force (Matrix Chain Ordering Problem Matrix Chain Multiplication)|Brute Force]] || 1940 || $O({4}^n)$ || $O(n)$ || Exact || Deterministic ||   
| [[Brute Force (Matrix Chain Ordering Problem Matrix Chain Multiplication)|Brute Force]] || 1940 || $O({4}^n)$ || $O(n)$ || Exact || Deterministic ||   
|-
|-
| [[Dynamic Programming Algorithm (S. S. Godbole) (Matrix Chain Ordering Problem Matrix Chain Multiplication)|Dynamic Programming Algorithm (S. S. Godbole)]] || 1953 || $O(n^{3})$ || $O(n^{2})$ || Exact || Deterministic ||
| [[Dynamic Programming Algorithm (S. S. Godbole) (Matrix Chain Ordering Problem Matrix Chain Multiplication)|Dynamic Programming Algorithm (S. S. Godbole)]] || 1953 || $O(n^{3})$ || $O(n^{2})$ || Exact || Deterministic || [http://mitpress.mit.edu/9780262046305/introduction-to-algorithms/ Space]
|-
|-
| [[T. C. Hu ; M. T. Shing (Matrix Chain Ordering Problem Matrix Chain Multiplication)|T. C. Hu ; M. T. Shing]] || 1982 || $O(nlogn)$ || $O(n)$ || Exact || Deterministic || [https://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.695.2923 Time]
| [[T. C. Hu ; M. T. Shing (Matrix Chain Ordering Problem Matrix Chain Multiplication)|T. C. Hu ; M. T. Shing]] || 1982 || $O(nlogn)$ || $O(n)$ || Exact || Deterministic || [https://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.695.2923 Time]
Line 38: Line 38:
[[File:Matrix Chain Multiplication - Matrix Chain Ordering Problem - Space.png|1000px]]
[[File:Matrix Chain Multiplication - Matrix Chain Ordering Problem - Space.png|1000px]]


== Space-Time Tradeoff Improvements ==  
== Time-Space Tradeoff ==  


[[File:Matrix Chain Multiplication - Matrix Chain Ordering Problem - Pareto Frontier.png|1000px]]
[[File:Matrix Chain Multiplication - Matrix Chain Ordering Problem - Pareto Frontier.png|1000px]]

Revision as of 14:39, 15 February 2023

Description

Matrix chain multiplication (or Matrix Chain Ordering Problem; MCOP) is an optimization problem. Given a sequence of matrices, the goal is to find the most efficient way to multiply these matrices.

Related Problems

Subproblem: Approximate MCOP, Matrix Chain Scheduling Problem

Related: Matrix Chain Scheduling Problem, Approximate MCSP

Parameters

$n$: number of matrices

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Brute Force 1940 $O({4}^n)$ $O(n)$ Exact Deterministic
Dynamic Programming Algorithm (S. S. Godbole) 1953 $O(n^{3})$ $O(n^{2})$ Exact Deterministic Space
T. C. Hu ; M. T. Shing 1982 $O(nlogn)$ $O(n)$ Exact Deterministic Time

Time Complexity Graph

Matrix Chain Multiplication - Matrix Chain Ordering Problem - Time.png

Space Complexity Graph

Matrix Chain Multiplication - Matrix Chain Ordering Problem - Space.png

Time-Space Tradeoff

Matrix Chain Multiplication - Matrix Chain Ordering Problem - Pareto Frontier.png

References/Citation

https://citeseerx.ist.psu.edu/viewdoc/citations?doi=10.1.1.695.2923