Cycle Detection: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 42: Line 42:
[[File:Cycle Detection - Space.png|1000px]]
[[File:Cycle Detection - Space.png|1000px]]


== Pareto Frontier Improvements Graph ==  
== Space-Time Tradeoff Improvements ==  


[[File:Cycle Detection - Pareto Frontier.png|1000px]]
[[File:Cycle Detection - Pareto Frontier.png|1000px]]

Revision as of 14:36, 15 February 2023

Description

Cycle detection or cycle finding is the algorithmic problem of finding a cycle in a sequence of iterated function values.

Parameters

t_f: time to perform one evaluation of f

\mu: the starting index of the cycle

\lambda: the period of the cycle

M: number of values stored

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Sedgewick; Szymanski; and Yao 1982 $(\mu + \lambda)({1}+\Theta({1}/sqrt(M)))$ M Exact Deterministic Time & Space
Nivasch 2004 $O(\mu + \lambda)$ $O(logn)$ Exact Deterministic Time & Space
Floyd's tortoise and hare algorithm 1967 $O((\lambda + \mu)$ t_f) $O({1})$ Exact Deterministic Time
Brent's algorithm 1973 $O((\lambda + \mu)$ t_f) $O({1})$ Exact Deterministic Time
Gosper's algorithm 1978 $O((\lambda + \mu)$ log(\lambda + \mu) t_f) \Theta(log(\mu + \lambda)) Exact Deterministic Time & Space

Time Complexity Graph

Cycle Detection - Time.png

Space Complexity Graph

Cycle Detection - Space.png

Space-Time Tradeoff Improvements

Cycle Detection - Pareto Frontier.png

References/Citation

https://www.sciencedirect.com/science/article/pii/0304397585900441?via%3Dihub