Root Computation: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:Root Computation (Root Computation)}} == Description == Given a real continuous function, compute one of the roots. == Parameters == No parameters found. == Table of Algorithms == Currently no algorithms in our database for the given problem.")
 
No edit summary
 
Line 10: Line 10:
== Table of Algorithms ==  
== Table of Algorithms ==  


Currently no algorithms in our database for the given problem.
{| class="wikitable sortable"  style="text-align:center;" width="100%"
 
! Name !! Year !! Time !! Space !! Approximation Factor !! Model !! Reference
 
|-
 
| [[Bisection method (General Root Computation Root Computation)|Bisection method]] || 1820 || $O(n_{max})$ || $O({1})$ || epsilon, additive || Deterministic || 
|-
| [[False position method (General Root Computation Root Computation)|False position method]] || 1690 || $O(n_{max})$ || $O({1})$ || epsilon, additive || Deterministic || 
|-
| [[Newton's method (Root Computation with continuous first derivative Root Computation)|Newton's method]] || 1940 || $O(n_{max})$ || $O({1})$ || epsilon, additive || Deterministic || 
|-
| [[Halley's method (Root Computation with continuous second derivative Root Computation)|Halley's method]] || 1940 || $O(n_{max})$ || $O({1})$ || epsilon, additive || Deterministic || 
|-
| [[Secant method (General Root Computation Root Computation)|Secant method]] || 1940 || $O(n_{max})$ || $O({1})$ || epsilon, additive || Deterministic || 
|-
| [[Ridder's method (General Root Computation Root Computation)|Ridder's method]] || 1979 || $O(n_{max})$ || $O({1})$ || epsilon, additive || Deterministic || [https://ieeexplore.ieee.org/document/1084580/ Time]
|-
| [[Muller's method (General Root Computation Root Computation)|Muller's method]] || 1956 || $O(n_{max})$ || $O({1})$ || epsilon, additive || Deterministic || [https://www.jstor.org/stable/2001916 Time]
|-
| [[Illinois Algorithm (General Root Computation Root Computation)|Illinois Algorithm]] || 1971 || $O(n_max)$ || $O({1})$ || epsilon, additive || Deterministic || [https://link.springer.com/article/10.1007/BF01934364 Time]
|-
| [[Anderson–Björck algorithm (General Root Computation Root Computation)|Anderson–Björck algorithm]] || 1973 || $O(n_max)$ || $O({1})$ || epsilon, additive || Deterministic || [https://link.springer.com/article/10.1007/BF01951936 Time]
|-
| [[ITP Method (General Root Computation Root Computation)|ITP Method]] || 1940? || $O(n_0+log((b-a)$/epsilon)) || $O({1})$ || epsilon, additive || Deterministic || 
|-
| [[Householder's Method (Root Computation with continuous derivatives (up to d) Root Computation)|Householder's Method]] || 1940(?) || $O(d*n_max)$? || $O(d)$ || epsilon, additive || Deterministic || 
|-
| [[Steffensen's method (General Root Computation Root Computation)|Steffensen's method]] || 1940(?) || $O(n_max)$ || $O({1})$ || epsilon, additive || Deterministic || 
|-
| [[Inverse quadratic interpolation (General Root Computation Root Computation)|Inverse quadratic interpolation]] || 1940(?) || $O(n_max)$ || $O({1})$ || epsilon, additive || Deterministic || 
|-
| [[Brent-Dekker Method (General Root Computation Root Computation)|Brent-Dekker Method]] || 1973 || $O(n_max)$ || $O({1})$ || epsilon, additive || Deterministic || [https://books.google.com/books?vid=ISBN0130223352 Time]
|-
|}

Latest revision as of 13:04, 15 February 2023

Description

Given a real continuous function, compute one of the roots.

Parameters

No parameters found.

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Bisection method 1820 $O(n_{max})$ $O({1})$ epsilon, additive Deterministic
False position method 1690 $O(n_{max})$ $O({1})$ epsilon, additive Deterministic
Newton's method 1940 $O(n_{max})$ $O({1})$ epsilon, additive Deterministic
Halley's method 1940 $O(n_{max})$ $O({1})$ epsilon, additive Deterministic
Secant method 1940 $O(n_{max})$ $O({1})$ epsilon, additive Deterministic
Ridder's method 1979 $O(n_{max})$ $O({1})$ epsilon, additive Deterministic Time
Muller's method 1956 $O(n_{max})$ $O({1})$ epsilon, additive Deterministic Time
Illinois Algorithm 1971 $O(n_max)$ $O({1})$ epsilon, additive Deterministic Time
Anderson–Björck algorithm 1973 $O(n_max)$ $O({1})$ epsilon, additive Deterministic Time
ITP Method 1940? $O(n_0+log((b-a)$/epsilon)) $O({1})$ epsilon, additive Deterministic
Householder's Method 1940(?) $O(d*n_max)$? $O(d)$ epsilon, additive Deterministic
Steffensen's method 1940(?) $O(n_max)$ $O({1})$ epsilon, additive Deterministic
Inverse quadratic interpolation 1940(?) $O(n_max)$ $O({1})$ epsilon, additive Deterministic
Brent-Dekker Method 1973 $O(n_max)$ $O({1})$ epsilon, additive Deterministic Time