Root Computation: Difference between revisions
Jump to navigation
Jump to search
(Created page with "{{DISPLAYTITLE:Root Computation (Root Computation)}} == Description == Given a real continuous function, compute one of the roots. == Parameters == No parameters found. == Table of Algorithms == Currently no algorithms in our database for the given problem.") |
No edit summary |
||
Line 10: | Line 10: | ||
== Table of Algorithms == | == Table of Algorithms == | ||
{| class="wikitable sortable" style="text-align:center;" width="100%" | |||
! Name !! Year !! Time !! Space !! Approximation Factor !! Model !! Reference | |||
|- | |||
| [[Bisection method (General Root Computation Root Computation)|Bisection method]] || 1820 || $O(n_{max})$ || $O({1})$ || epsilon, additive || Deterministic || | |||
|- | |||
| [[False position method (General Root Computation Root Computation)|False position method]] || 1690 || $O(n_{max})$ || $O({1})$ || epsilon, additive || Deterministic || | |||
|- | |||
| [[Newton's method (Root Computation with continuous first derivative Root Computation)|Newton's method]] || 1940 || $O(n_{max})$ || $O({1})$ || epsilon, additive || Deterministic || | |||
|- | |||
| [[Halley's method (Root Computation with continuous second derivative Root Computation)|Halley's method]] || 1940 || $O(n_{max})$ || $O({1})$ || epsilon, additive || Deterministic || | |||
|- | |||
| [[Secant method (General Root Computation Root Computation)|Secant method]] || 1940 || $O(n_{max})$ || $O({1})$ || epsilon, additive || Deterministic || | |||
|- | |||
| [[Ridder's method (General Root Computation Root Computation)|Ridder's method]] || 1979 || $O(n_{max})$ || $O({1})$ || epsilon, additive || Deterministic || [https://ieeexplore.ieee.org/document/1084580/ Time] | |||
|- | |||
| [[Muller's method (General Root Computation Root Computation)|Muller's method]] || 1956 || $O(n_{max})$ || $O({1})$ || epsilon, additive || Deterministic || [https://www.jstor.org/stable/2001916 Time] | |||
|- | |||
| [[Illinois Algorithm (General Root Computation Root Computation)|Illinois Algorithm]] || 1971 || $O(n_max)$ || $O({1})$ || epsilon, additive || Deterministic || [https://link.springer.com/article/10.1007/BF01934364 Time] | |||
|- | |||
| [[Anderson–Björck algorithm (General Root Computation Root Computation)|Anderson–Björck algorithm]] || 1973 || $O(n_max)$ || $O({1})$ || epsilon, additive || Deterministic || [https://link.springer.com/article/10.1007/BF01951936 Time] | |||
|- | |||
| [[ITP Method (General Root Computation Root Computation)|ITP Method]] || 1940? || $O(n_0+log((b-a)$/epsilon)) || $O({1})$ || epsilon, additive || Deterministic || | |||
|- | |||
| [[Householder's Method (Root Computation with continuous derivatives (up to d) Root Computation)|Householder's Method]] || 1940(?) || $O(d*n_max)$? || $O(d)$ || epsilon, additive || Deterministic || | |||
|- | |||
| [[Steffensen's method (General Root Computation Root Computation)|Steffensen's method]] || 1940(?) || $O(n_max)$ || $O({1})$ || epsilon, additive || Deterministic || | |||
|- | |||
| [[Inverse quadratic interpolation (General Root Computation Root Computation)|Inverse quadratic interpolation]] || 1940(?) || $O(n_max)$ || $O({1})$ || epsilon, additive || Deterministic || | |||
|- | |||
| [[Brent-Dekker Method (General Root Computation Root Computation)|Brent-Dekker Method]] || 1973 || $O(n_max)$ || $O({1})$ || epsilon, additive || Deterministic || [https://books.google.com/books?vid=ISBN0130223352 Time] | |||
|- | |||
|} |
Latest revision as of 13:04, 15 February 2023
Description
Given a real continuous function, compute one of the roots.
Parameters
No parameters found.
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Bisection method | 1820 | $O(n_{max})$ | $O({1})$ | epsilon, additive | Deterministic | |
False position method | 1690 | $O(n_{max})$ | $O({1})$ | epsilon, additive | Deterministic | |
Newton's method | 1940 | $O(n_{max})$ | $O({1})$ | epsilon, additive | Deterministic | |
Halley's method | 1940 | $O(n_{max})$ | $O({1})$ | epsilon, additive | Deterministic | |
Secant method | 1940 | $O(n_{max})$ | $O({1})$ | epsilon, additive | Deterministic | |
Ridder's method | 1979 | $O(n_{max})$ | $O({1})$ | epsilon, additive | Deterministic | Time |
Muller's method | 1956 | $O(n_{max})$ | $O({1})$ | epsilon, additive | Deterministic | Time |
Illinois Algorithm | 1971 | $O(n_max)$ | $O({1})$ | epsilon, additive | Deterministic | Time |
Anderson–Björck algorithm | 1973 | $O(n_max)$ | $O({1})$ | epsilon, additive | Deterministic | Time |
ITP Method | 1940? | $O(n_0+log((b-a)$/epsilon)) | $O({1})$ | epsilon, additive | Deterministic | |
Householder's Method | 1940(?) | $O(d*n_max)$? | $O(d)$ | epsilon, additive | Deterministic | |
Steffensen's method | 1940(?) | $O(n_max)$ | $O({1})$ | epsilon, additive | Deterministic | |
Inverse quadratic interpolation | 1940(?) | $O(n_max)$ | $O({1})$ | epsilon, additive | Deterministic | |
Brent-Dekker Method | 1973 | $O(n_max)$ | $O({1})$ | epsilon, additive | Deterministic | Time |