Gröbner Bases: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 26: Line 26:
|}
|}


== Time Complexity graph ==  
== Time Complexity Graph ==  


[[File:Gröbner Bases - Time.png|1000px]]
[[File:Gröbner Bases - Time.png|1000px]]


== Space Complexity graph ==  
== Space Complexity Graph ==  


[[File:Gröbner Bases - Space.png|1000px]]
[[File:Gröbner Bases - Space.png|1000px]]


== Pareto Decades graph ==  
== Pareto Frontier Improvements Graph ==  


[[File:Gröbner Bases - Pareto Frontier.png|1000px]]
[[File:Gröbner Bases - Pareto Frontier.png|1000px]]

Revision as of 13:04, 15 February 2023

Description

In mathematics, and more specifically in computer algebra, computational algebraic geometry, and computational commutative algebra, a Gröbner basis is a particular kind of generating set of an ideal in a polynomial ring $K(x_1, \ldots ,x_n)$ over a field $K$. As an algorithmic problem, given a set of polynomials in $K(x_1, \ldots,x_n)$, determine a Gröbner basis.

Parameters

n: number of variables in each polynomial

d: maximal total degree of the polynomials

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Buchberger's algorithm 1976 d^{({2}^{(n+o({1})})}) d^{({2}^{(n+o({1}))})}?? Exact Deterministic Time
Faugère F4 algorithm 1999 $O(C(n+D_reg, D_reg)$^{\omega}) where omega is the exponent on matrix multiplication $O(C(n+D_{reg}, D_{reg})$^{2})? Exact Deterministic Time
Faugère F5 algorithm 2002 $O(C(n+D_reg, D_reg)$^{\omega}) where omega is the exponent on matrix multiplication $O(C(n+D_{reg}, D_{reg})$^{2})? Exact Deterministic Time

Time Complexity Graph

Gröbner Bases - Time.png

Space Complexity Graph

Gröbner Bases - Space.png

Pareto Frontier Improvements Graph

Gröbner Bases - Pareto Frontier.png