CFG Recognition: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:CFG Recognition (CFG Problems)}} == Description == Given a grammar $G$ and a string $s$, determine if the string $s$ can be derived by the grammar $G$. == Related Problems == Related: CFG Parsing == Parameters == <pre>n: length of the given string</pre> == Table of Algorithms == {| class="wikitable sortable" style="text-align:center;" width="100%" ! Name !! Year !! Time !! Space !! Approximation Factor !! Model !! Reference |- | Cocke...")
 
No edit summary
Line 10: Line 10:
== Parameters ==  
== Parameters ==  


<pre>n: length of the given string</pre>
n: length of the given string


== Table of Algorithms ==  
== Table of Algorithms ==  

Revision as of 12:03, 15 February 2023

Description

Given a grammar $G$ and a string $s$, determine if the string $s$ can be derived by the grammar $G$.

Related Problems

Related: CFG Parsing

Parameters

n: length of the given string

Table of Algorithms

Name Year Time Space Approximation Factor Model Reference
Cocke–Younger–Kasami algorithm 1968 G|)$ $O(n^{2})$ Exact Deterministic Time & Space
Valiant 1975 G|)$ where omega is the exponent for matrix multiplication $O(n^{2})$? Exact Deterministic Time

Time Complexity graph

CFG Problems - CFG Recognition - Time.png

Space Complexity graph

CFG Problems - CFG Recognition - Space.png

Pareto Decades graph

CFG Problems - CFG Recognition - Pareto Frontier.png

Reductions FROM Problem

Problem Implication Year Citation Reduction
k-Clique assume: k-Clique Hypothesis
then: there is no $O(N^{\omega-\epsilon}) time algorithm for target for any $\epsilon > {0}$
2017 https://ieeexplore.ieee.org/abstract/document/8104058 link
k-Clique assume: k-Clique Hypothesis
then: there is no $O(N^{\{3}-\epsilon}) time combinatorial algorithm for target for any $\epsilon > {0}$
2017 https://ieeexplore.ieee.org/abstract/document/8104058 link

References/Citation

https://linkinghub.elsevier.com/retrieve/pii/S0022000075800468