Enumerating Maximal Cliques, arbitrary graph: Difference between revisions
Jump to navigation
Jump to search
(Created page with "{{DISPLAYTITLE:Enumerating Maximal Cliques, arbitrary graph (Clique Problems)}} == Description == A maximal clique (complete subgraph) is a clique that is not contained in any other clique. The goal here is to enumerate such maximal cliques in a given graph. == Related Problems == Related: k-Clique, Exact k-Clique, Min-Weight k-Clique, Max-Weight k-Clique == Parameters == <pre>n: number of vertices m: number of edges</pre> == Table of Algorithms...") |
No edit summary |
||
Line 10: | Line 10: | ||
== Parameters == | == Parameters == | ||
n: number of vertices | |||
m: number of edges | |||
m: number of edges | |||
== Table of Algorithms == | == Table of Algorithms == |
Revision as of 12:02, 15 February 2023
Description
A maximal clique (complete subgraph) is a clique that is not contained in any other clique. The goal here is to enumerate such maximal cliques in a given graph.
Related Problems
Related: k-Clique, Exact k-Clique, Min-Weight k-Clique, Max-Weight k-Clique
Parameters
n: number of vertices
m: number of edges
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Bron–Kerbosch algorithm | 1973 | $O({3}^{(n/{3})})$ | $O(n^{2})$ auxiliary? | Exact | Deterministic | Time |
Akkoyunlu; E. A. | 1973 | $O({3}^{(n/{3})$}) | $O(n^{2})$ auxiliary?? | Exact | Deterministic | Time |
Tomita; Tanaka & Takahashi | 2006 | $O({3}^{(n/{3})$}) | $O(n^{2})$ auxiliary? | Exact | Deterministic | Time |
Segundo; Artieda; Strash Parallel | 2011 | $O({3}^{(n/{3})})$ total work? (previously this cell said $O(n^{4})$) | $O(n^{2})$ auxiliary?? | Exact | Parallel | Time |
David Eppstein, Maarten Löffler, Darren Strash | 2010 | $O(dn {3}^{(d/{3})})$ | $O(n^{2})$ auxiliary? | Exact | Deterministic | Time |
Chiba and Nishizeki | 1985 | $O(a(G)*m)$ per clique | $O(m)$ auxiliary | Exact | Deterministic | Time & Space |
M. Chrobak and D. Eppstein | 1989 | $O(n d^{2} {2}^d)$ | $O(n)$ auxiliary? | Exact | Deterministic | Time |
Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa | 1977 | $O(nm)$ per clique | $O(m)$ auxiliary | Exact | Deterministic | Time |
Kazuhisa Makino, Takeaki Uno; Section 5 | 2004 | $O(n^{\omega})$ per clique where omega is the exponent on matrix multiplication | $O(n^{2})$ auxiliary | Exact | Deterministic | Time & Space |
Kazuhisa Makino, Takeaki Uno; Section 6 | 2004 | $O(delta^{4})$ | $O(n+m)$ auxiliary(?) | Exact | Deterministic | Time & Space |