Variance Calculations: Difference between revisions
Jump to navigation
Jump to search
(Created page with "{{DISPLAYTITLE:Variance Calculations (Variance Calculations)}} == Description == Given a set of n (real/integer) numbers, compute the variance (sample or population). Of interest is streaming algorithms and numerical stability. == Parameters == <pre>n: number of values</pre> == Table of Algorithms == {| class="wikitable sortable" style="text-align:center;" width="100%" ! Name !! Year !! Time !! Space !! Approximation Factor !! Model !! Reference |- | Naïve...") |
No edit summary |
||
Line 6: | Line 6: | ||
== Parameters == | == Parameters == | ||
n: number of values | |||
== Table of Algorithms == | == Table of Algorithms == |
Revision as of 12:02, 15 February 2023
Description
Given a set of n (real/integer) numbers, compute the variance (sample or population). Of interest is streaming algorithms and numerical stability.
Parameters
n: number of values
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Naïve algorithm | 1940 | $O(n)$ | $O({1})$ auxiliary | Exact | Deterministic | |
Two-pass algorithm | 1940 | $O(n)$ | $O({1})$ auxiliary | Exact | Deterministic | |
Welford's Online algorithm | 1962 | $O(n)$ | $O({1})$ auxiliary | Exact | Deterministic | Time |
Weighted incremental algorithm | 1979 | $O(n)$ | $O({1})$ auxiliary | Exact | Deterministic | Time |
Chan's algorithm Parallel Implementation | 1979 | $O(log n)$ | $O({1})$ per processor | Exact | Parallel | Time |