Integer Factoring: Difference between revisions

From Algorithm Wiki
Jump to navigation Jump to search
(Created page with "{{DISPLAYTITLE:Integer Factoring (Integer Factoring)}} == Description == Given an $n$-bit integer $N$, find a non-trivial factorization $N=pq$ (where $p, q>1$ are integers) or return that $N$ is prime. For "first category" algorithms, the running time depends on the size of smallest prime factor. == Related Problems == Related: Smallest Factor == Parameters == <pre>n: number of bits in the integer B: bound parameter (if needed)</pre> == Table of Algorithms =...")
 
No edit summary
Line 10: Line 10:
== Parameters ==  
== Parameters ==  


<pre>n: number of bits in the integer
n: number of bits in the integer
B: bound parameter (if needed)</pre>
 
B: bound parameter (if needed)


== Table of Algorithms ==  
== Table of Algorithms ==  

Revision as of 12:02, 15 February 2023

Description

Given an $n$-bit integer $N$, find a non-trivial factorization $N=pq$ (where $p, q>1$ are integers) or return that $N$ is prime. For "first category" algorithms, the running time depends on the size of smallest prime factor.

Related Problems

Related: Smallest Factor

Parameters

n: number of bits in the integer

B: bound parameter (if needed)

Table of Algorithms

Currently no algorithms in our database for the given problem.

Time Complexity graph

Integer Factoring - Time.png

Space Complexity graph

Integer Factoring - Space.png

Pareto Decades graph

Integer Factoring - Pareto Frontier.png