Matrix Multiplication: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 12: | Line 12: | ||
== Parameters == | == Parameters == | ||
n: dimension of square matrix | |||
== Table of Algorithms == | == Table of Algorithms == |
Revision as of 12:02, 15 February 2023
Description
Matrix Multiplication or Matrix Product is a binary operation that produces a matrix from two matrices with entries in a field; or; more generally; in a ring or even a semiring.
Related Problems
Subproblem: Boolean Matrix Multiplication, Matrix Product Verification
Related: Boolean Matrix Multiplication (Combinatorial), Matrix Product Verification, Distance Product, $(\min, \leq)$ Product
Parameters
n: dimension of square matrix
Table of Algorithms
Name | Year | Time | Space | Approximation Factor | Model | Reference |
---|---|---|---|---|---|---|
Naive algorithm | 1940 | $O(n^{3})$ | $O({1})$ auxiliary | Exact | Deterministic | |
Strassen's algorithm | 1969 | $O(n^{(log7/log2)}) ~ O(n^{2.{80}7})$ | $O(n^{2})$ | Exact | Deterministic | Time & Space |
Pan's algorithm | 1978 | $O(n^{(log({143640})/log({70}))}) ~ O(n^{2.{79}5})$ | $O(n^{2})$ | Exact | Deterministic | Time |
Romani's algorithm | 1981 | $O(n^{2.{5166}5})$ | $O(n^{2})$ | Exact | Deterministic | Time |
Coppersmith–Winograd algorithm | 1981 | $O(n^{2.{49554}8})$ | $O(n^{2})$ | Exact | Deterministic | Time |
Strassen's algorithm | 1986 | $O(n^{(log54/log5)}) ~ O(n^{({2.4785})})$ | $O(n^{2})$ | Exact | Deterministic | Time |
Coppersmith–Winograd algorithm | 1990 | $O(n^{2.{375}5})$ | $O(n^{2})$ | Exact | Deterministic | Time |
Vassilevska Williams | 2014 | $O(n^{2.{37287}3})$ | $O(n^{2})$ | Exact | Deterministic | Time |
François Le Gall | 2014 | $O(n^{2.{372863}9})$ | $O(n^{2})$ | Exact | Deterministic | Time |
Bini's algorithm | 1979 | $O(n^{2.{779}9})$ | $O(n^{2})$ | $O(n logn)$ error | Deterministic | Time |
Schonhage's algorithm | 1980 | $O(n^{({3}*log52/log110)}) ~ O(n^{2.{521}8})$ | $O(n^{2})$ | ? | Deterministic | Time |